New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exdistr | GIF version |
Description: Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.) |
Ref | Expression |
---|---|
exdistr | ⊢ (∃x∃y(φ ∧ ψ) ↔ ∃x(φ ∧ ∃yψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42v 1905 | . 2 ⊢ (∃y(φ ∧ ψ) ↔ (φ ∧ ∃yψ)) | |
2 | 1 | exbii 1582 | 1 ⊢ (∃x∃y(φ ∧ ψ) ↔ ∃x(φ ∧ ∃yψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
This theorem is referenced by: 19.42vv 1907 3exdistr 1910 sbel2x 2125 sbccomlem 3117 otkelins3kg 4255 el1st 4730 elres 4996 |
Copyright terms: Public domain | W3C validator |