New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.42vv | GIF version |
Description: Theorem 19.42 of [Margaris] p. 90 with 2 quantifiers. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
19.42vv | ⊢ (∃x∃y(φ ∧ ψ) ↔ (φ ∧ ∃x∃yψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1906 | . 2 ⊢ (∃x∃y(φ ∧ ψ) ↔ ∃x(φ ∧ ∃yψ)) | |
2 | 19.42v 1905 | . 2 ⊢ (∃x(φ ∧ ∃yψ) ↔ (φ ∧ ∃x∃yψ)) | |
3 | 1, 2 | bitri 240 | 1 ⊢ (∃x∃y(φ ∧ ψ) ↔ (φ ∧ ∃x∃yψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
This theorem is referenced by: 19.42vvv 1908 exdistr2 1909 3exdistr 1910 ceqsex3v 2898 ceqsex4v 2899 ceqsex8v 2901 otkelins2kg 4254 otkelins3kg 4255 opkelcokg 4262 sikexlem 4296 insklem 4305 elswap 4741 dmsi 5520 dfoprab2 5559 resoprab 5582 ov3 5600 ov6g 5601 brpprod 5840 dmpprod 5841 lecex 6116 ce0nnul 6178 |
Copyright terms: Public domain | W3C validator |