| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > eupickb | GIF version | ||
| Description: Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| eupickb | ⊢ ((∃!xφ ∧ ∃!xψ ∧ ∃x(φ ∧ ψ)) → (φ ↔ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupick 2267 | . . 3 ⊢ ((∃!xφ ∧ ∃x(φ ∧ ψ)) → (φ → ψ)) | |
| 2 | 1 | 3adant2 974 | . 2 ⊢ ((∃!xφ ∧ ∃!xψ ∧ ∃x(φ ∧ ψ)) → (φ → ψ)) |
| 3 | 3simpc 954 | . . 3 ⊢ ((∃!xφ ∧ ∃!xψ ∧ ∃x(φ ∧ ψ)) → (∃!xψ ∧ ∃x(φ ∧ ψ))) | |
| 4 | pm3.22 436 | . . . . 5 ⊢ ((φ ∧ ψ) → (ψ ∧ φ)) | |
| 5 | 4 | eximi 1576 | . . . 4 ⊢ (∃x(φ ∧ ψ) → ∃x(ψ ∧ φ)) |
| 6 | 5 | anim2i 552 | . . 3 ⊢ ((∃!xψ ∧ ∃x(φ ∧ ψ)) → (∃!xψ ∧ ∃x(ψ ∧ φ))) |
| 7 | eupick 2267 | . . 3 ⊢ ((∃!xψ ∧ ∃x(ψ ∧ φ)) → (ψ → φ)) | |
| 8 | 3, 6, 7 | 3syl 18 | . 2 ⊢ ((∃!xφ ∧ ∃!xψ ∧ ∃x(φ ∧ ψ)) → (ψ → φ)) |
| 9 | 2, 8 | impbid 183 | 1 ⊢ ((∃!xφ ∧ ∃!xψ ∧ ∃x(φ ∧ ψ)) → (φ ↔ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 ∃wex 1541 ∃!weu 2204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |