NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3sstr4d GIF version

Theorem 3sstr4d 3315
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr4d.1 (φA B)
3sstr4d.2 (φC = A)
3sstr4d.3 (φD = B)
Assertion
Ref Expression
3sstr4d (φC D)

Proof of Theorem 3sstr4d
StepHypRef Expression
1 3sstr4d.1 . 2 (φA B)
2 3sstr4d.2 . . 3 (φC = A)
3 3sstr4d.3 . . 3 (φD = B)
42, 3sseq12d 3301 . 2 (φ → (C DA B))
51, 4mpbird 223 1 (φC D)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260
This theorem is referenced by:  mapsspm  6022  sbthlem3  6206
  Copyright terms: Public domain W3C validator