![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > syl5eqss | GIF version |
Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
syl5eqss.1 | ⊢ A = B |
syl5eqss.2 | ⊢ (φ → B ⊆ C) |
Ref | Expression |
---|---|
syl5eqss | ⊢ (φ → A ⊆ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqss.2 | . 2 ⊢ (φ → B ⊆ C) | |
2 | syl5eqss.1 | . . 3 ⊢ A = B | |
3 | 2 | sseq1i 3295 | . 2 ⊢ (A ⊆ C ↔ B ⊆ C) |
4 | 1, 3 | sylibr 203 | 1 ⊢ (φ → A ⊆ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ⊆ wss 3257 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 |
This theorem is referenced by: syl5eqssr 3316 inss 3484 peano5 4409 spfininduct 4540 fun 5236 fmpt 5692 clos1induct 5880 sbthlem1 6203 spacssnc 6284 frecxp 6314 frecxpg 6315 |
Copyright terms: Public domain | W3C validator |