New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > a16gb | GIF version |
Description: A generalization of Axiom ax-16 2144. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
a16gb | ⊢ (∀x x = y → (φ ↔ ∀zφ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a16g 1945 | . 2 ⊢ (∀x x = y → (φ → ∀zφ)) | |
2 | sp 1747 | . 2 ⊢ (∀zφ → φ) | |
3 | 1, 2 | impbid1 194 | 1 ⊢ (∀x x = y → (φ ↔ ∀zφ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: sbal 2127 |
Copyright terms: Public domain | W3C validator |