New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbcbid | GIF version |
Description: Formula-building deduction rule for class substitution. (Contributed by NM, 29-Dec-2014.) |
Ref | Expression |
---|---|
sbcbid.1 | ⊢ Ⅎxφ |
sbcbid.2 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
sbcbid | ⊢ (φ → ([̣A / x]̣ψ ↔ [̣A / x]̣χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbid.1 | . . . 4 ⊢ Ⅎxφ | |
2 | sbcbid.2 | . . . 4 ⊢ (φ → (ψ ↔ χ)) | |
3 | 1, 2 | abbid 2467 | . . 3 ⊢ (φ → {x ∣ ψ} = {x ∣ χ}) |
4 | 3 | eleq2d 2420 | . 2 ⊢ (φ → (A ∈ {x ∣ ψ} ↔ A ∈ {x ∣ χ})) |
5 | df-sbc 3048 | . 2 ⊢ ([̣A / x]̣ψ ↔ A ∈ {x ∣ ψ}) | |
6 | df-sbc 3048 | . 2 ⊢ ([̣A / x]̣χ ↔ A ∈ {x ∣ χ}) | |
7 | 4, 5, 6 | 3bitr4g 279 | 1 ⊢ (φ → ([̣A / x]̣ψ ↔ [̣A / x]̣χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 Ⅎwnf 1544 ∈ wcel 1710 {cab 2339 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-sbc 3048 |
This theorem is referenced by: sbcbidv 3101 csbeq2d 3161 |
Copyright terms: Public domain | W3C validator |