| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rabeqf | GIF version | ||
| Description: Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) |
| Ref | Expression |
|---|---|
| rabeqf.1 | ⊢ ℲxA |
| rabeqf.2 | ⊢ ℲxB |
| Ref | Expression |
|---|---|
| rabeqf | ⊢ (A = B → {x ∈ A ∣ φ} = {x ∈ B ∣ φ}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqf.1 | . . . 4 ⊢ ℲxA | |
| 2 | rabeqf.2 | . . . 4 ⊢ ℲxB | |
| 3 | 1, 2 | nfeq 2497 | . . 3 ⊢ Ⅎx A = B |
| 4 | eleq2 2414 | . . . 4 ⊢ (A = B → (x ∈ A ↔ x ∈ B)) | |
| 5 | 4 | anbi1d 685 | . . 3 ⊢ (A = B → ((x ∈ A ∧ φ) ↔ (x ∈ B ∧ φ))) |
| 6 | 3, 5 | abbid 2467 | . 2 ⊢ (A = B → {x ∣ (x ∈ A ∧ φ)} = {x ∣ (x ∈ B ∧ φ)}) |
| 7 | df-rab 2624 | . 2 ⊢ {x ∈ A ∣ φ} = {x ∣ (x ∈ A ∧ φ)} | |
| 8 | df-rab 2624 | . 2 ⊢ {x ∈ B ∣ φ} = {x ∣ (x ∈ B ∧ φ)} | |
| 9 | 6, 7, 8 | 3eqtr4g 2410 | 1 ⊢ (A = B → {x ∈ A ∣ φ} = {x ∈ B ∣ φ}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 {crab 2619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 |
| This theorem is referenced by: rabeq 2854 |
| Copyright terms: Public domain | W3C validator |