NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nffvd GIF version

Theorem nffvd 5336
Description: Deduction version of bound-variable hypothesis builder nffv 5335. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nffvd.2 (φxF)
nffvd.3 (φxA)
Assertion
Ref Expression
nffvd (φx(FA))

Proof of Theorem nffvd
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2495 . . 3 x{z x z F}
2 nfaba1 2495 . . 3 x{z x z A}
31, 2nffv 5335 . 2 x({z x z F} ‘{z x z A})
4 nffvd.2 . . 3 (φxF)
5 nffvd.3 . . 3 (φxA)
6 nfnfc1 2493 . . . . 5 xxF
7 nfnfc1 2493 . . . . 5 xxA
86, 7nfan 1824 . . . 4 x(xF xA)
9 abidnf 3006 . . . . . 6 (xF → {z x z F} = F)
109adantr 451 . . . . 5 ((xF xA) → {z x z F} = F)
11 abidnf 3006 . . . . . 6 (xA → {z x z A} = A)
1211adantl 452 . . . . 5 ((xF xA) → {z x z A} = A)
1310, 12fveq12d 5334 . . . 4 ((xF xA) → ({z x z F} ‘{z x z A}) = (FA))
148, 13nfceqdf 2489 . . 3 ((xF xA) → (x({z x z F} ‘{z x z A}) ↔ x(FA)))
154, 5, 14syl2anc 642 . 2 (φ → (x({z x z F} ‘{z x z A}) ↔ x(FA)))
163, 15mpbii 202 1 (φx(FA))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540   = wceq 1642   wcel 1710  {cab 2339  wnfc 2477  cfv 4782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-br 4641  df-fv 4796
This theorem is referenced by:  nfovd  5545
  Copyright terms: Public domain W3C validator