New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfimad | GIF version |
Description: Deduction version of bound-variable hypothesis builder nfima 4954. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfimad.2 | ⊢ (φ → ℲxA) |
nfimad.3 | ⊢ (φ → ℲxB) |
Ref | Expression |
---|---|
nfimad | ⊢ (φ → Ⅎx(A “ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfaba1 2495 | . . 3 ⊢ Ⅎx{z ∣ ∀x z ∈ A} | |
2 | nfaba1 2495 | . . 3 ⊢ Ⅎx{z ∣ ∀x z ∈ B} | |
3 | 1, 2 | nfima 4954 | . 2 ⊢ Ⅎx({z ∣ ∀x z ∈ A} “ {z ∣ ∀x z ∈ B}) |
4 | nfimad.2 | . . 3 ⊢ (φ → ℲxA) | |
5 | nfimad.3 | . . 3 ⊢ (φ → ℲxB) | |
6 | nfnfc1 2493 | . . . . 5 ⊢ ℲxℲxA | |
7 | nfnfc1 2493 | . . . . 5 ⊢ ℲxℲxB | |
8 | 6, 7 | nfan 1824 | . . . 4 ⊢ Ⅎx(ℲxA ∧ ℲxB) |
9 | abidnf 3006 | . . . . . 6 ⊢ (ℲxA → {z ∣ ∀x z ∈ A} = A) | |
10 | 9 | imaeq1d 4942 | . . . . 5 ⊢ (ℲxA → ({z ∣ ∀x z ∈ A} “ {z ∣ ∀x z ∈ B}) = (A “ {z ∣ ∀x z ∈ B})) |
11 | abidnf 3006 | . . . . . 6 ⊢ (ℲxB → {z ∣ ∀x z ∈ B} = B) | |
12 | 11 | imaeq2d 4943 | . . . . 5 ⊢ (ℲxB → (A “ {z ∣ ∀x z ∈ B}) = (A “ B)) |
13 | 10, 12 | sylan9eq 2405 | . . . 4 ⊢ ((ℲxA ∧ ℲxB) → ({z ∣ ∀x z ∈ A} “ {z ∣ ∀x z ∈ B}) = (A “ B)) |
14 | 8, 13 | nfceqdf 2489 | . . 3 ⊢ ((ℲxA ∧ ℲxB) → (Ⅎx({z ∣ ∀x z ∈ A} “ {z ∣ ∀x z ∈ B}) ↔ Ⅎx(A “ B))) |
15 | 4, 5, 14 | syl2anc 642 | . 2 ⊢ (φ → (Ⅎx({z ∣ ∀x z ∈ A} “ {z ∣ ∀x z ∈ B}) ↔ Ⅎx(A “ B))) |
16 | 3, 15 | mpbii 202 | 1 ⊢ (φ → Ⅎx(A “ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 “ cima 4723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-ima 4728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |