NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  tfinsuc GIF version

Theorem tfinsuc 4499
Description: The finite T operator over a successor. (Contributed by SF, 30-Jan-2015.)
Assertion
Ref Expression
tfinsuc ((A Nn (A +c 1c) ≠ ) → Tfin (A +c 1c) = ( Tfin A +c 1c))

Proof of Theorem tfinsuc
Dummy variables a b x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3560 . . 3 ((A +c 1c) ≠ a a (A +c 1c))
2 peano2 4404 . . . . . . . 8 (A Nn → (A +c 1c) Nn )
3 tfincl 4493 . . . . . . . 8 ((A +c 1c) NnTfin (A +c 1c) Nn )
42, 3syl 15 . . . . . . 7 (A NnTfin (A +c 1c) Nn )
54adantr 451 . . . . . 6 ((A Nn a (A +c 1c)) → Tfin (A +c 1c) Nn )
6 tfincl 4493 . . . . . . . 8 (A NnTfin A Nn )
7 peano2 4404 . . . . . . . 8 ( Tfin A Nn → ( Tfin A +c 1c) Nn )
86, 7syl 15 . . . . . . 7 (A Nn → ( Tfin A +c 1c) Nn )
98adantr 451 . . . . . 6 ((A Nn a (A +c 1c)) → ( Tfin A +c 1c) Nn )
10 tfinpw1 4495 . . . . . . 7 (((A +c 1c) Nn a (A +c 1c)) → 1a Tfin (A +c 1c))
112, 10sylan 457 . . . . . 6 ((A Nn a (A +c 1c)) → 1a Tfin (A +c 1c))
12 elsuc 4414 . . . . . . . 8 (a (A +c 1c) ↔ b A x ba = (b ∪ {x}))
13 tfinpw1 4495 . . . . . . . . . . . 12 ((A Nn b A) → 1b Tfin A)
1413adantrr 697 . . . . . . . . . . 11 ((A Nn (b A x b)) → 1b Tfin A)
15 vex 2863 . . . . . . . . . . . . . . 15 x V
1615elcompl 3226 . . . . . . . . . . . . . 14 (x b ↔ ¬ x b)
17 snelpw1 4147 . . . . . . . . . . . . . 14 ({x} 1bx b)
1816, 17xchbinxr 302 . . . . . . . . . . . . 13 (x b ↔ ¬ {x} 1b)
1918biimpi 186 . . . . . . . . . . . 12 (x b → ¬ {x} 1b)
2019ad2antll 709 . . . . . . . . . . 11 ((A Nn (b A x b)) → ¬ {x} 1b)
21 snex 4112 . . . . . . . . . . . 12 {x} V
2221elsuci 4415 . . . . . . . . . . 11 ((1b Tfin A ¬ {x} 1b) → (1b ∪ {{x}}) ( Tfin A +c 1c))
2314, 20, 22syl2anc 642 . . . . . . . . . 10 ((A Nn (b A x b)) → (1b ∪ {{x}}) ( Tfin A +c 1c))
24 pw1eq 4144 . . . . . . . . . . . 12 (a = (b ∪ {x}) → 1a = 1(b ∪ {x}))
25 pw1un 4164 . . . . . . . . . . . . 13 1(b ∪ {x}) = (1b1{x})
2615pw1sn 4166 . . . . . . . . . . . . . 14 1{x} = {{x}}
2726uneq2i 3416 . . . . . . . . . . . . 13 (1b1{x}) = (1b ∪ {{x}})
2825, 27eqtri 2373 . . . . . . . . . . . 12 1(b ∪ {x}) = (1b ∪ {{x}})
2924, 28syl6eq 2401 . . . . . . . . . . 11 (a = (b ∪ {x}) → 1a = (1b ∪ {{x}}))
3029eleq1d 2419 . . . . . . . . . 10 (a = (b ∪ {x}) → (1a ( Tfin A +c 1c) ↔ (1b ∪ {{x}}) ( Tfin A +c 1c)))
3123, 30syl5ibrcom 213 . . . . . . . . 9 ((A Nn (b A x b)) → (a = (b ∪ {x}) → 1a ( Tfin A +c 1c)))
3231rexlimdvva 2746 . . . . . . . 8 (A Nn → (b A x ba = (b ∪ {x}) → 1a ( Tfin A +c 1c)))
3312, 32syl5bi 208 . . . . . . 7 (A Nn → (a (A +c 1c) → 1a ( Tfin A +c 1c)))
3433imp 418 . . . . . 6 ((A Nn a (A +c 1c)) → 1a ( Tfin A +c 1c))
35 nnceleq 4431 . . . . . 6 ((( Tfin (A +c 1c) Nn ( Tfin A +c 1c) Nn ) (1a Tfin (A +c 1c) 1a ( Tfin A +c 1c))) → Tfin (A +c 1c) = ( Tfin A +c 1c))
365, 9, 11, 34, 35syl22anc 1183 . . . . 5 ((A Nn a (A +c 1c)) → Tfin (A +c 1c) = ( Tfin A +c 1c))
3736ex 423 . . . 4 (A Nn → (a (A +c 1c) → Tfin (A +c 1c) = ( Tfin A +c 1c)))
3837exlimdv 1636 . . 3 (A Nn → (a a (A +c 1c) → Tfin (A +c 1c) = ( Tfin A +c 1c)))
391, 38syl5bi 208 . 2 (A Nn → ((A +c 1c) ≠ Tfin (A +c 1c) = ( Tfin A +c 1c)))
4039imp 418 1 ((A Nn (A +c 1c) ≠ ) → Tfin (A +c 1c) = ( Tfin A +c 1c))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358  wex 1541   = wceq 1642   wcel 1710  wne 2517  wrex 2616  ccompl 3206  cun 3208  c0 3551  {csn 3738  1cc1c 4135  1cpw1 4136   Nn cnnc 4374   +c cplc 4376   Tfin ctfin 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-tfin 4444
This theorem is referenced by:  tfin1c  4500  tfinltfinlem1  4501  sfintfin  4533  tfinnn  4535
  Copyright terms: Public domain W3C validator