New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > equcomi | GIF version |
Description: Commutative law for equality. Lemma 3 of [KalishMontague] p. 85. See also Lemma 7 of [Tarski] p. 69. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 9-Apr-2017.) |
Ref | Expression |
---|---|
equcomi | ⊢ (x = y → y = x) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 1676 | . 2 ⊢ x = x | |
2 | ax-8 1675 | . 2 ⊢ (x = y → (x = x → y = x)) | |
3 | 1, 2 | mpi 16 | 1 ⊢ (x = y → y = x) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: equcom 1680 equcoms 1681 equequ1OLD 1685 ax12dgen2 1726 sp 1747 spOLD 1748 dvelimhw 1849 ax12olem1 1927 ax10 1944 a16g 1945 cbv2h 1980 equvini 1987 equveli 1988 equsb2 2035 ax16i 2046 aecom-o 2151 ax10from10o 2177 aev-o 2182 iotaval 4350 ider 5943 |
Copyright terms: Public domain | W3C validator |