New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > inrab | GIF version |
Description: Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.) |
Ref | Expression |
---|---|
inrab | ⊢ ({x ∈ A ∣ φ} ∩ {x ∈ A ∣ ψ}) = {x ∈ A ∣ (φ ∧ ψ)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2623 | . . 3 ⊢ {x ∈ A ∣ φ} = {x ∣ (x ∈ A ∧ φ)} | |
2 | df-rab 2623 | . . 3 ⊢ {x ∈ A ∣ ψ} = {x ∣ (x ∈ A ∧ ψ)} | |
3 | 1, 2 | ineq12i 3455 | . 2 ⊢ ({x ∈ A ∣ φ} ∩ {x ∈ A ∣ ψ}) = ({x ∣ (x ∈ A ∧ φ)} ∩ {x ∣ (x ∈ A ∧ ψ)}) |
4 | df-rab 2623 | . . 3 ⊢ {x ∈ A ∣ (φ ∧ ψ)} = {x ∣ (x ∈ A ∧ (φ ∧ ψ))} | |
5 | inab 3522 | . . . 4 ⊢ ({x ∣ (x ∈ A ∧ φ)} ∩ {x ∣ (x ∈ A ∧ ψ)}) = {x ∣ ((x ∈ A ∧ φ) ∧ (x ∈ A ∧ ψ))} | |
6 | anandi 801 | . . . . 5 ⊢ ((x ∈ A ∧ (φ ∧ ψ)) ↔ ((x ∈ A ∧ φ) ∧ (x ∈ A ∧ ψ))) | |
7 | 6 | abbii 2465 | . . . 4 ⊢ {x ∣ (x ∈ A ∧ (φ ∧ ψ))} = {x ∣ ((x ∈ A ∧ φ) ∧ (x ∈ A ∧ ψ))} |
8 | 5, 7 | eqtr4i 2376 | . . 3 ⊢ ({x ∣ (x ∈ A ∧ φ)} ∩ {x ∣ (x ∈ A ∧ ψ)}) = {x ∣ (x ∈ A ∧ (φ ∧ ψ))} |
9 | 4, 8 | eqtr4i 2376 | . 2 ⊢ {x ∈ A ∣ (φ ∧ ψ)} = ({x ∣ (x ∈ A ∧ φ)} ∩ {x ∣ (x ∈ A ∧ ψ)}) |
10 | 3, 9 | eqtr4i 2376 | 1 ⊢ ({x ∈ A ∣ φ} ∩ {x ∈ A ∣ ψ}) = {x ∈ A ∣ (φ ∧ ψ)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 {crab 2618 ∩ cin 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rab 2623 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 |
This theorem is referenced by: rabnc 3574 |
Copyright terms: Public domain | W3C validator |