NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  trtxp GIF version

Theorem trtxp 5782
Description: Trinary relationship over a tail cross product. (Contributed by SF, 13-Feb-2015.)
Assertion
Ref Expression
trtxp (A(RS)B, C ↔ (ARB ASC))

Proof of Theorem trtxp
Dummy variables x y z t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brex 4690 . . 3 (A(RS)B, C → (A V B, C V))
2 opexb 4604 . . . 4 (B, C V ↔ (B V C V))
32anbi2i 675 . . 3 ((A V B, C V) ↔ (A V (B V C V)))
41, 3sylib 188 . 2 (A(RS)B, C → (A V (B V C V)))
5 brex 4690 . . . 4 (ARB → (A V B V))
6 brex 4690 . . . 4 (ASC → (A V C V))
75, 6anim12i 549 . . 3 ((ARB ASC) → ((A V B V) (A V C V)))
8 anandi 801 . . 3 ((A V (B V C V)) ↔ ((A V B V) (A V C V)))
97, 8sylibr 203 . 2 ((ARB ASC) → (A V (B V C V)))
10 breq1 4643 . . . . . 6 (x = A → (x(RS)B, CA(RS)B, C))
11 breq1 4643 . . . . . . 7 (x = A → (xRBARB))
12 breq1 4643 . . . . . . 7 (x = A → (xSCASC))
1311, 12anbi12d 691 . . . . . 6 (x = A → ((xRB xSC) ↔ (ARB ASC)))
1410, 13bibi12d 312 . . . . 5 (x = A → ((x(RS)B, C ↔ (xRB xSC)) ↔ (A(RS)B, C ↔ (ARB ASC))))
1514imbi2d 307 . . . 4 (x = A → (((B V C V) → (x(RS)B, C ↔ (xRB xSC))) ↔ ((B V C V) → (A(RS)B, C ↔ (ARB ASC)))))
16 opeq1 4579 . . . . . . 7 (y = By, z = B, z)
1716breq2d 4652 . . . . . 6 (y = B → (x(RS)y, zx(RS)B, z))
18 breq2 4644 . . . . . . 7 (y = B → (xRyxRB))
1918anbi1d 685 . . . . . 6 (y = B → ((xRy xSz) ↔ (xRB xSz)))
2017, 19bibi12d 312 . . . . 5 (y = B → ((x(RS)y, z ↔ (xRy xSz)) ↔ (x(RS)B, z ↔ (xRB xSz))))
21 opeq2 4580 . . . . . . 7 (z = CB, z = B, C)
2221breq2d 4652 . . . . . 6 (z = C → (x(RS)B, zx(RS)B, C))
23 breq2 4644 . . . . . . 7 (z = C → (xSzxSC))
2423anbi2d 684 . . . . . 6 (z = C → ((xRB xSz) ↔ (xRB xSC)))
2522, 24bibi12d 312 . . . . 5 (z = C → ((x(RS)B, z ↔ (xRB xSz)) ↔ (x(RS)B, C ↔ (xRB xSC))))
26 df-txp 5737 . . . . . . 7 (RS) = ((1st R) ∩ (2nd S))
2726breqi 4646 . . . . . 6 (x(RS)y, zx((1st R) ∩ (2nd S))y, z)
28 brin 4694 . . . . . 6 (x((1st R) ∩ (2nd S))y, z ↔ (x(1st R)y, z x(2nd S)y, z))
29 brco 4884 . . . . . . . 8 (x(1st R)y, zt(xRt t1st y, z))
30 ancom 437 . . . . . . . . . 10 ((xRt t1st y, z) ↔ (t1st y, z xRt))
31 brcnv 4893 . . . . . . . . . . . 12 (t1st y, zy, z1st t)
32 vex 2863 . . . . . . . . . . . . 13 y V
33 vex 2863 . . . . . . . . . . . . 13 z V
3432, 33opbr1st 5502 . . . . . . . . . . . 12 (y, z1st ty = t)
35 equcom 1680 . . . . . . . . . . . 12 (y = tt = y)
3631, 34, 353bitri 262 . . . . . . . . . . 11 (t1st y, zt = y)
3736anbi1i 676 . . . . . . . . . 10 ((t1st y, z xRt) ↔ (t = y xRt))
3830, 37bitri 240 . . . . . . . . 9 ((xRt t1st y, z) ↔ (t = y xRt))
3938exbii 1582 . . . . . . . 8 (t(xRt t1st y, z) ↔ t(t = y xRt))
40 breq2 4644 . . . . . . . . 9 (t = y → (xRtxRy))
4132, 40ceqsexv 2895 . . . . . . . 8 (t(t = y xRt) ↔ xRy)
4229, 39, 413bitri 262 . . . . . . 7 (x(1st R)y, zxRy)
43 brco 4884 . . . . . . . 8 (x(2nd S)y, zt(xSt t2nd y, z))
44 ancom 437 . . . . . . . . . 10 ((xSt t2nd y, z) ↔ (t2nd y, z xSt))
45 brcnv 4893 . . . . . . . . . . . 12 (t2nd y, zy, z2nd t)
4632, 33opbr2nd 5503 . . . . . . . . . . . 12 (y, z2nd tz = t)
47 equcom 1680 . . . . . . . . . . . 12 (z = tt = z)
4845, 46, 473bitri 262 . . . . . . . . . . 11 (t2nd y, zt = z)
4948anbi1i 676 . . . . . . . . . 10 ((t2nd y, z xSt) ↔ (t = z xSt))
5044, 49bitri 240 . . . . . . . . 9 ((xSt t2nd y, z) ↔ (t = z xSt))
5150exbii 1582 . . . . . . . 8 (t(xSt t2nd y, z) ↔ t(t = z xSt))
52 breq2 4644 . . . . . . . . 9 (t = z → (xStxSz))
5333, 52ceqsexv 2895 . . . . . . . 8 (t(t = z xSt) ↔ xSz)
5443, 51, 533bitri 262 . . . . . . 7 (x(2nd S)y, zxSz)
5542, 54anbi12i 678 . . . . . 6 ((x(1st R)y, z x(2nd S)y, z) ↔ (xRy xSz))
5627, 28, 553bitri 262 . . . . 5 (x(RS)y, z ↔ (xRy xSz))
5720, 25, 56vtocl2g 2919 . . . 4 ((B V C V) → (x(RS)B, C ↔ (xRB xSC)))
5815, 57vtoclg 2915 . . 3 (A V → ((B V C V) → (A(RS)B, C ↔ (ARB ASC))))
5958imp 418 . 2 ((A V (B V C V)) → (A(RS)B, C ↔ (ARB ASC)))
604, 9, 59pm5.21nii 342 1 (A(RS)B, C ↔ (ARB ASC))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860  cin 3209  cop 4562   class class class wbr 4640  1st c1st 4718   ccom 4722  ccnv 4772  2nd c2nd 4784  ctxp 5736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-co 4727  df-cnv 4786  df-2nd 4798  df-txp 5737
This theorem is referenced by:  oteltxp  5783  txpcofun  5804  addcfnex  5825  qrpprod  5837  xpassenlem  6057  xpassen  6058  enmap2lem1  6064  enmap1lem1  6070  ovmuc  6131  ceex  6175  nncdiv3lem1  6276  nchoicelem10  6299
  Copyright terms: Public domain W3C validator