New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > uniin | GIF version |
Description: The class union of the intersection of two classes. Exercise 4.12(n) of [Mendelson] p. 235. See uniinqs in set.mm for a condition where equality holds. (Contributed by NM, 4-Dec-2003.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
uniin | ⊢ ∪(A ∩ B) ⊆ (∪A ∩ ∪B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1609 | . . . 4 ⊢ (∃y((x ∈ y ∧ y ∈ A) ∧ (x ∈ y ∧ y ∈ B)) → (∃y(x ∈ y ∧ y ∈ A) ∧ ∃y(x ∈ y ∧ y ∈ B))) | |
2 | elin 3220 | . . . . . . 7 ⊢ (y ∈ (A ∩ B) ↔ (y ∈ A ∧ y ∈ B)) | |
3 | 2 | anbi2i 675 | . . . . . 6 ⊢ ((x ∈ y ∧ y ∈ (A ∩ B)) ↔ (x ∈ y ∧ (y ∈ A ∧ y ∈ B))) |
4 | anandi 801 | . . . . . 6 ⊢ ((x ∈ y ∧ (y ∈ A ∧ y ∈ B)) ↔ ((x ∈ y ∧ y ∈ A) ∧ (x ∈ y ∧ y ∈ B))) | |
5 | 3, 4 | bitri 240 | . . . . 5 ⊢ ((x ∈ y ∧ y ∈ (A ∩ B)) ↔ ((x ∈ y ∧ y ∈ A) ∧ (x ∈ y ∧ y ∈ B))) |
6 | 5 | exbii 1582 | . . . 4 ⊢ (∃y(x ∈ y ∧ y ∈ (A ∩ B)) ↔ ∃y((x ∈ y ∧ y ∈ A) ∧ (x ∈ y ∧ y ∈ B))) |
7 | eluni 3895 | . . . . 5 ⊢ (x ∈ ∪A ↔ ∃y(x ∈ y ∧ y ∈ A)) | |
8 | eluni 3895 | . . . . 5 ⊢ (x ∈ ∪B ↔ ∃y(x ∈ y ∧ y ∈ B)) | |
9 | 7, 8 | anbi12i 678 | . . . 4 ⊢ ((x ∈ ∪A ∧ x ∈ ∪B) ↔ (∃y(x ∈ y ∧ y ∈ A) ∧ ∃y(x ∈ y ∧ y ∈ B))) |
10 | 1, 6, 9 | 3imtr4i 257 | . . 3 ⊢ (∃y(x ∈ y ∧ y ∈ (A ∩ B)) → (x ∈ ∪A ∧ x ∈ ∪B)) |
11 | eluni 3895 | . . 3 ⊢ (x ∈ ∪(A ∩ B) ↔ ∃y(x ∈ y ∧ y ∈ (A ∩ B))) | |
12 | elin 3220 | . . 3 ⊢ (x ∈ (∪A ∩ ∪B) ↔ (x ∈ ∪A ∧ x ∈ ∪B)) | |
13 | 10, 11, 12 | 3imtr4i 257 | . 2 ⊢ (x ∈ ∪(A ∩ B) → x ∈ (∪A ∩ ∪B)) |
14 | 13 | ssriv 3278 | 1 ⊢ ∪(A ∩ B) ⊆ (∪A ∩ ∪B) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 ∈ wcel 1710 ∩ cin 3209 ⊆ wss 3258 ∪cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-uni 3893 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |