| Step | Hyp | Ref
 | Expression | 
| 1 |   | elun 3221 | 
. . . . . 6
⊢ (x ∈ (A ∪ B)
↔ (x ∈ A  ∨ x ∈ B)) | 
| 2 | 1 | anbi1i 676 | 
. . . . 5
⊢ ((x ∈ (A ∪ B) ∧ y ∈ C) ↔
((x ∈
A  ∨
x ∈
B) ∧
y ∈
C)) | 
| 3 |   | andir 838 | 
. . . . 5
⊢ (((x ∈ A  ∨ x ∈ B) ∧ y ∈ C) ↔ ((x
∈ A ∧ y ∈ C)  ∨ (x ∈ B ∧ y ∈ C))) | 
| 4 | 2, 3 | bitri 240 | 
. . . 4
⊢ ((x ∈ (A ∪ B) ∧ y ∈ C) ↔
((x ∈
A ∧
y ∈
C)  ∨
(x ∈
B ∧
y ∈
C))) | 
| 5 | 4 | opabbii 4627 | 
. . 3
⊢ {〈x, y〉 ∣ (x ∈ (A ∪
B) ∧
y ∈
C)} = {〈x, y〉 ∣ ((x ∈ A ∧ y ∈ C)  ∨ (x ∈ B ∧ y ∈ C))} | 
| 6 |   | unopab 4639 | 
. . 3
⊢ ({〈x, y〉 ∣ (x ∈ A ∧ y ∈ C)} ∪
{〈x,
y〉 ∣ (x ∈ B ∧ y ∈ C)}) = {〈x, y〉 ∣ ((x ∈ A ∧ y ∈ C)  ∨ (x ∈ B ∧ y ∈ C))} | 
| 7 | 5, 6 | eqtr4i 2376 | 
. 2
⊢ {〈x, y〉 ∣ (x ∈ (A ∪
B) ∧
y ∈
C)} = ({〈x, y〉 ∣ (x ∈ A ∧ y ∈ C)} ∪
{〈x,
y〉 ∣ (x ∈ B ∧ y ∈ C)}) | 
| 8 |   | df-xp 4785 | 
. 2
⊢ ((A ∪ B)
× C) = {〈x, y〉 ∣ (x ∈ (A ∪
B) ∧
y ∈
C)} | 
| 9 |   | df-xp 4785 | 
. . 3
⊢ (A × C) =
{〈x,
y〉 ∣ (x ∈ A ∧ y ∈ C)} | 
| 10 |   | df-xp 4785 | 
. . 3
⊢ (B × C) =
{〈x,
y〉 ∣ (x ∈ B ∧ y ∈ C)} | 
| 11 | 9, 10 | uneq12i 3417 | 
. 2
⊢ ((A × C)
∪ (B × C)) = ({〈x, y〉 ∣ (x ∈ A ∧ y ∈ C)} ∪ {〈x, y〉 ∣ (x ∈ B ∧ y ∈ C)}) | 
| 12 | 7, 8, 11 | 3eqtr4i 2383 | 
1
⊢ ((A ∪ B)
× C) = ((A × C)
∪ (B × C)) |