Step | Hyp | Ref
| Expression |
1 | | elun 3221 |
. . . . . 6
⊢ (x ∈ (A ∪ B)
↔ (x ∈ A ∨ x ∈ B)) |
2 | 1 | anbi1i 676 |
. . . . 5
⊢ ((x ∈ (A ∪ B) ∧ y ∈ C) ↔
((x ∈
A ∨
x ∈
B) ∧
y ∈
C)) |
3 | | andir 838 |
. . . . 5
⊢ (((x ∈ A ∨ x ∈ B) ∧ y ∈ C) ↔ ((x
∈ A ∧ y ∈ C) ∨ (x ∈ B ∧ y ∈ C))) |
4 | 2, 3 | bitri 240 |
. . . 4
⊢ ((x ∈ (A ∪ B) ∧ y ∈ C) ↔
((x ∈
A ∧
y ∈
C) ∨
(x ∈
B ∧
y ∈
C))) |
5 | 4 | opabbii 4627 |
. . 3
⊢ {〈x, y〉 ∣ (x ∈ (A ∪
B) ∧
y ∈
C)} = {〈x, y〉 ∣ ((x ∈ A ∧ y ∈ C) ∨ (x ∈ B ∧ y ∈ C))} |
6 | | unopab 4639 |
. . 3
⊢ ({〈x, y〉 ∣ (x ∈ A ∧ y ∈ C)} ∪
{〈x,
y〉 ∣ (x ∈ B ∧ y ∈ C)}) = {〈x, y〉 ∣ ((x ∈ A ∧ y ∈ C) ∨ (x ∈ B ∧ y ∈ C))} |
7 | 5, 6 | eqtr4i 2376 |
. 2
⊢ {〈x, y〉 ∣ (x ∈ (A ∪
B) ∧
y ∈
C)} = ({〈x, y〉 ∣ (x ∈ A ∧ y ∈ C)} ∪
{〈x,
y〉 ∣ (x ∈ B ∧ y ∈ C)}) |
8 | | df-xp 4785 |
. 2
⊢ ((A ∪ B)
× C) = {〈x, y〉 ∣ (x ∈ (A ∪
B) ∧
y ∈
C)} |
9 | | df-xp 4785 |
. . 3
⊢ (A × C) =
{〈x,
y〉 ∣ (x ∈ A ∧ y ∈ C)} |
10 | | df-xp 4785 |
. . 3
⊢ (B × C) =
{〈x,
y〉 ∣ (x ∈ B ∧ y ∈ C)} |
11 | 9, 10 | uneq12i 3417 |
. 2
⊢ ((A × C)
∪ (B × C)) = ({〈x, y〉 ∣ (x ∈ A ∧ y ∈ C)} ∪ {〈x, y〉 ∣ (x ∈ B ∧ y ∈ C)}) |
12 | 7, 8, 11 | 3eqtr4i 2383 |
1
⊢ ((A ∪ B)
× C) = ((A × C)
∪ (B × C)) |