New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexun | GIF version |
Description: Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.) |
Ref | Expression |
---|---|
rexun | ⊢ (∃x ∈ (A ∪ B)φ ↔ (∃x ∈ A φ ∨ ∃x ∈ B φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2620 | . 2 ⊢ (∃x ∈ (A ∪ B)φ ↔ ∃x(x ∈ (A ∪ B) ∧ φ)) | |
2 | 19.43 1605 | . . 3 ⊢ (∃x((x ∈ A ∧ φ) ∨ (x ∈ B ∧ φ)) ↔ (∃x(x ∈ A ∧ φ) ∨ ∃x(x ∈ B ∧ φ))) | |
3 | elun 3220 | . . . . . 6 ⊢ (x ∈ (A ∪ B) ↔ (x ∈ A ∨ x ∈ B)) | |
4 | 3 | anbi1i 676 | . . . . 5 ⊢ ((x ∈ (A ∪ B) ∧ φ) ↔ ((x ∈ A ∨ x ∈ B) ∧ φ)) |
5 | andir 838 | . . . . 5 ⊢ (((x ∈ A ∨ x ∈ B) ∧ φ) ↔ ((x ∈ A ∧ φ) ∨ (x ∈ B ∧ φ))) | |
6 | 4, 5 | bitri 240 | . . . 4 ⊢ ((x ∈ (A ∪ B) ∧ φ) ↔ ((x ∈ A ∧ φ) ∨ (x ∈ B ∧ φ))) |
7 | 6 | exbii 1582 | . . 3 ⊢ (∃x(x ∈ (A ∪ B) ∧ φ) ↔ ∃x((x ∈ A ∧ φ) ∨ (x ∈ B ∧ φ))) |
8 | df-rex 2620 | . . . 4 ⊢ (∃x ∈ A φ ↔ ∃x(x ∈ A ∧ φ)) | |
9 | df-rex 2620 | . . . 4 ⊢ (∃x ∈ B φ ↔ ∃x(x ∈ B ∧ φ)) | |
10 | 8, 9 | orbi12i 507 | . . 3 ⊢ ((∃x ∈ A φ ∨ ∃x ∈ B φ) ↔ (∃x(x ∈ A ∧ φ) ∨ ∃x(x ∈ B ∧ φ))) |
11 | 2, 7, 10 | 3bitr4i 268 | . 2 ⊢ (∃x(x ∈ (A ∪ B) ∧ φ) ↔ (∃x ∈ A φ ∨ ∃x ∈ B φ)) |
12 | 1, 11 | bitri 240 | 1 ⊢ (∃x ∈ (A ∪ B)φ ↔ (∃x ∈ A φ ∨ ∃x ∈ B φ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 ∧ wa 358 ∃wex 1541 ∈ wcel 1710 ∃wrex 2615 ∪ cun 3207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-un 3214 |
This theorem is referenced by: rexprg 3776 rextpg 3778 iunxun 4047 pw1un 4163 nnadjoin 4520 tfinnn 4534 phiun 4614 |
Copyright terms: Public domain | W3C validator |