New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax16ALT2 | GIF version |
Description: Alternate proof of ax16 2045. (Contributed by NM, 8-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax16ALT2 | ⊢ (∀x x = y → (φ → ∀xφ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aev 1991 | . 2 ⊢ (∀x x = y → ∀z x = z) | |
2 | sbequ12 1919 | . . . . 5 ⊢ (x = z → (φ ↔ [z / x]φ)) | |
3 | 2 | biimpcd 215 | . . . 4 ⊢ (φ → (x = z → [z / x]φ)) |
4 | 3 | alimdv 1621 | . . 3 ⊢ (φ → (∀z x = z → ∀z[z / x]φ)) |
5 | nfv 1619 | . . . . 5 ⊢ Ⅎzφ | |
6 | 5 | nfs1 2044 | . . . 4 ⊢ Ⅎx[z / x]φ |
7 | stdpc7 1917 | . . . 4 ⊢ (z = x → ([z / x]φ → φ)) | |
8 | 6, 5, 7 | cbv3 1982 | . . 3 ⊢ (∀z[z / x]φ → ∀xφ) |
9 | 4, 8 | syl6com 31 | . 2 ⊢ (∀z x = z → (φ → ∀xφ)) |
10 | 1, 9 | syl 15 | 1 ⊢ (∀x x = y → (φ → ∀xφ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: a16gALT 2049 |
Copyright terms: Public domain | W3C validator |