New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > n0moeu | GIF version |
Description: A case of equivalence of "at most one" and "only one". (Contributed by FL, 6-Dec-2010.) |
Ref | Expression |
---|---|
n0moeu | ⊢ (A ≠ ∅ → (∃*x x ∈ A ↔ ∃!x x ∈ A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 3560 | . . . 4 ⊢ (A ≠ ∅ ↔ ∃x x ∈ A) | |
2 | 1 | biimpi 186 | . . 3 ⊢ (A ≠ ∅ → ∃x x ∈ A) |
3 | 2 | biantrurd 494 | . 2 ⊢ (A ≠ ∅ → (∃*x x ∈ A ↔ (∃x x ∈ A ∧ ∃*x x ∈ A))) |
4 | eu5 2242 | . 2 ⊢ (∃!x x ∈ A ↔ (∃x x ∈ A ∧ ∃*x x ∈ A)) | |
5 | 3, 4 | syl6bbr 254 | 1 ⊢ (A ≠ ∅ → (∃*x x ∈ A ↔ ∃!x x ∈ A)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 ∈ wcel 1710 ∃!weu 2204 ∃*wmo 2205 ≠ wne 2517 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |