NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dffo3 GIF version

Theorem dffo3 5423
Description: An onto mapping expressed in terms of function values. (Contributed by set.mm contributors, 29-Oct-2006.)
Assertion
Ref Expression
dffo3 (F:AontoB ↔ (F:A–→B y B x A y = (Fx)))
Distinct variable groups:   x,y,A   x,B,y   x,F,y

Proof of Theorem dffo3
StepHypRef Expression
1 dffo2 5274 . 2 (F:AontoB ↔ (F:A–→B ran F = B))
2 ffn 5224 . . . . 5 (F:A–→BF Fn A)
3 fnrnfv 5365 . . . . . 6 (F Fn A → ran F = {y x A y = (Fx)})
43eqeq1d 2361 . . . . 5 (F Fn A → (ran F = B ↔ {y x A y = (Fx)} = B))
52, 4syl 15 . . . 4 (F:A–→B → (ran F = B ↔ {y x A y = (Fx)} = B))
6 simpr 447 . . . . . . . . . . 11 (((F:A–→B x A) y = (Fx)) → y = (Fx))
7 ffvelrn 5416 . . . . . . . . . . . 12 ((F:A–→B x A) → (Fx) B)
87adantr 451 . . . . . . . . . . 11 (((F:A–→B x A) y = (Fx)) → (Fx) B)
96, 8eqeltrd 2427 . . . . . . . . . 10 (((F:A–→B x A) y = (Fx)) → y B)
109exp31 587 . . . . . . . . 9 (F:A–→B → (x A → (y = (Fx) → y B)))
1110rexlimdv 2738 . . . . . . . 8 (F:A–→B → (x A y = (Fx) → y B))
1211biantrurd 494 . . . . . . 7 (F:A–→B → ((y Bx A y = (Fx)) ↔ ((x A y = (Fx) → y B) (y Bx A y = (Fx)))))
13 dfbi2 609 . . . . . . 7 ((x A y = (Fx) ↔ y B) ↔ ((x A y = (Fx) → y B) (y Bx A y = (Fx))))
1412, 13syl6rbbr 255 . . . . . 6 (F:A–→B → ((x A y = (Fx) ↔ y B) ↔ (y Bx A y = (Fx))))
1514albidv 1625 . . . . 5 (F:A–→B → (y(x A y = (Fx) ↔ y B) ↔ y(y Bx A y = (Fx))))
16 abeq1 2460 . . . . 5 ({y x A y = (Fx)} = By(x A y = (Fx) ↔ y B))
17 df-ral 2620 . . . . 5 (y B x A y = (Fx) ↔ y(y Bx A y = (Fx)))
1815, 16, 173bitr4g 279 . . . 4 (F:A–→B → ({y x A y = (Fx)} = By B x A y = (Fx)))
195, 18bitrd 244 . . 3 (F:A–→B → (ran F = By B x A y = (Fx)))
2019pm5.32i 618 . 2 ((F:A–→B ran F = B) ↔ (F:A–→B y B x A y = (Fx)))
211, 20bitri 240 1 (F:AontoB ↔ (F:A–→B y B x A y = (Fx)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540   = wceq 1642   wcel 1710  {cab 2339  wral 2615  wrex 2616  ran crn 4774   Fn wfn 4777  –→wf 4778  ontowfo 4780  cfv 4782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-id 4768  df-cnv 4786  df-rn 4787  df-dm 4788  df-fun 4790  df-fn 4791  df-f 4792  df-fo 4794  df-fv 4796
This theorem is referenced by:  dffo4  5424  foelrn  5426  foco2  5427  foov  5607
  Copyright terms: Public domain W3C validator