| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > euor | GIF version | ||
| Description: Introduce a disjunct into a uniqueness quantifier. (Contributed by NM, 21-Oct-2005.) |
| Ref | Expression |
|---|---|
| euor.1 | ⊢ Ⅎxφ |
| Ref | Expression |
|---|---|
| euor | ⊢ ((¬ φ ∧ ∃!xψ) → ∃!x(φ ∨ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euor.1 | . . . 4 ⊢ Ⅎxφ | |
| 2 | 1 | nfn 1793 | . . 3 ⊢ Ⅎx ¬ φ |
| 3 | biorf 394 | . . 3 ⊢ (¬ φ → (ψ ↔ (φ ∨ ψ))) | |
| 4 | 2, 3 | eubid 2211 | . 2 ⊢ (¬ φ → (∃!xψ ↔ ∃!x(φ ∨ ψ))) |
| 5 | 4 | biimpa 470 | 1 ⊢ ((¬ φ ∧ ∃!xψ) → ∃!x(φ ∨ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 ∧ wa 358 Ⅎwnf 1544 ∃!weu 2204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-eu 2208 |
| This theorem is referenced by: euorv 2232 |
| Copyright terms: Public domain | W3C validator |