New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbv1h | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
cbv1h.1 | ⊢ (φ → (ψ → ∀yψ)) |
cbv1h.2 | ⊢ (φ → (χ → ∀xχ)) |
cbv1h.3 | ⊢ (φ → (x = y → (ψ → χ))) |
Ref | Expression |
---|---|
cbv1h | ⊢ (∀x∀yφ → (∀xψ → ∀yχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbv1h.1 | . . . . 5 ⊢ (φ → (ψ → ∀yψ)) | |
2 | 1 | sps 1754 | . . . 4 ⊢ (∀yφ → (ψ → ∀yψ)) |
3 | 2 | al2imi 1561 | . . 3 ⊢ (∀x∀yφ → (∀xψ → ∀x∀yψ)) |
4 | ax-7 1734 | . . 3 ⊢ (∀x∀yψ → ∀y∀xψ) | |
5 | 3, 4 | syl6 29 | . 2 ⊢ (∀x∀yφ → (∀xψ → ∀y∀xψ)) |
6 | cbv1h.3 | . . . . . . . 8 ⊢ (φ → (x = y → (ψ → χ))) | |
7 | 6 | com23 72 | . . . . . . 7 ⊢ (φ → (ψ → (x = y → χ))) |
8 | cbv1h.2 | . . . . . . 7 ⊢ (φ → (χ → ∀xχ)) | |
9 | 7, 8 | syl6d 64 | . . . . . 6 ⊢ (φ → (ψ → (x = y → ∀xχ))) |
10 | 9 | al2imi 1561 | . . . . 5 ⊢ (∀xφ → (∀xψ → ∀x(x = y → ∀xχ))) |
11 | ax9o 1950 | . . . . 5 ⊢ (∀x(x = y → ∀xχ) → χ) | |
12 | 10, 11 | syl6 29 | . . . 4 ⊢ (∀xφ → (∀xψ → χ)) |
13 | 12 | al2imi 1561 | . . 3 ⊢ (∀y∀xφ → (∀y∀xψ → ∀yχ)) |
14 | 13 | a7s 1735 | . 2 ⊢ (∀x∀yφ → (∀y∀xψ → ∀yχ)) |
15 | 5, 14 | syld 40 | 1 ⊢ (∀x∀yφ → (∀xψ → ∀yχ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: cbv1 1979 cbv2h 1980 cbv3h 1983 |
Copyright terms: Public domain | W3C validator |