New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbval | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) |
Ref | Expression |
---|---|
cbval.1 | ⊢ Ⅎyφ |
cbval.2 | ⊢ Ⅎxψ |
cbval.3 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbval | ⊢ (∀xφ ↔ ∀yψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbval.1 | . . 3 ⊢ Ⅎyφ | |
2 | cbval.2 | . . 3 ⊢ Ⅎxψ | |
3 | cbval.3 | . . . 4 ⊢ (x = y → (φ ↔ ψ)) | |
4 | 3 | biimpd 198 | . . 3 ⊢ (x = y → (φ → ψ)) |
5 | 1, 2, 4 | cbv3 1982 | . 2 ⊢ (∀xφ → ∀yψ) |
6 | 3 | biimprd 214 | . . . 4 ⊢ (x = y → (ψ → φ)) |
7 | 6 | equcoms 1681 | . . 3 ⊢ (y = x → (ψ → φ)) |
8 | 2, 1, 7 | cbv3 1982 | . 2 ⊢ (∀yψ → ∀xφ) |
9 | 5, 8 | impbii 180 | 1 ⊢ (∀xφ ↔ ∀yψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: cbvex 1985 cbvalv 2002 cbval2 2004 sb8eu 2222 abbi 2464 cleqf 2514 cbvralf 2830 ralab2 3002 cbvralcsf 3199 dfss2f 3265 elintab 3938 cbviota 4345 sb8iota 4347 dffun6f 5124 |
Copyright terms: Public domain | W3C validator |