New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sb8 | GIF version |
Description: Substitution of variable in universal quantifier. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
sb5rf.1 | ⊢ Ⅎyφ |
Ref | Expression |
---|---|
sb8 | ⊢ (∀xφ ↔ ∀y[y / x]φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb5rf.1 | . . . 4 ⊢ Ⅎyφ | |
2 | 1 | nfal 1842 | . . 3 ⊢ Ⅎy∀xφ |
3 | stdpc4 2024 | . . 3 ⊢ (∀xφ → [y / x]φ) | |
4 | 2, 3 | alrimi 1765 | . 2 ⊢ (∀xφ → ∀y[y / x]φ) |
5 | 1 | nfs1 2044 | . . 3 ⊢ Ⅎx[y / x]φ |
6 | stdpc7 1917 | . . 3 ⊢ (y = x → ([y / x]φ → φ)) | |
7 | 5, 1, 6 | cbv3 1982 | . 2 ⊢ (∀y[y / x]φ → ∀xφ) |
8 | 4, 7 | impbii 180 | 1 ⊢ (∀xφ ↔ ∀y[y / x]φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sb8e 2093 sbhb 2107 sbnf2 2108 sb8eu 2222 sb8iota 4347 |
Copyright terms: Public domain | W3C validator |