New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbv3hvOLD | GIF version |
Description: Obsolete proof of cbv3hv 1850 as of 29-Dec-2017. (Contributed by NM, 25-Jul-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbv3hv.1 | ⊢ (φ → ∀yφ) |
cbv3hv.2 | ⊢ (ψ → ∀xψ) |
cbv3hv.3 | ⊢ (x = y → (φ → ψ)) |
Ref | Expression |
---|---|
cbv3hvOLD | ⊢ (∀xφ → ∀yψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbv3hv.1 | . . 3 ⊢ (φ → ∀yφ) | |
2 | 1 | alimi 1559 | . 2 ⊢ (∀xφ → ∀x∀yφ) |
3 | ax9v 1655 | . . . . 5 ⊢ ¬ ∀x ¬ x = y | |
4 | hba1 1786 | . . . . . . . 8 ⊢ (∀xφ → ∀x∀xφ) | |
5 | cbv3hv.2 | . . . . . . . 8 ⊢ (ψ → ∀xψ) | |
6 | 4, 5 | hbim 1817 | . . . . . . 7 ⊢ ((∀xφ → ψ) → ∀x(∀xφ → ψ)) |
7 | 6 | hbn 1776 | . . . . . 6 ⊢ (¬ (∀xφ → ψ) → ∀x ¬ (∀xφ → ψ)) |
8 | sp 1747 | . . . . . . . 8 ⊢ (∀xφ → φ) | |
9 | cbv3hv.3 | . . . . . . . 8 ⊢ (x = y → (φ → ψ)) | |
10 | 8, 9 | syl5 28 | . . . . . . 7 ⊢ (x = y → (∀xφ → ψ)) |
11 | 10 | con3i 127 | . . . . . 6 ⊢ (¬ (∀xφ → ψ) → ¬ x = y) |
12 | 7, 11 | alrimih 1565 | . . . . 5 ⊢ (¬ (∀xφ → ψ) → ∀x ¬ x = y) |
13 | 3, 12 | mt3 171 | . . . 4 ⊢ (∀xφ → ψ) |
14 | 13 | alimi 1559 | . . 3 ⊢ (∀y∀xφ → ∀yψ) |
15 | 14 | a7s 1735 | . 2 ⊢ (∀x∀yφ → ∀yψ) |
16 | 2, 15 | syl 15 | 1 ⊢ (∀xφ → ∀yψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |