NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cbval2v GIF version

Theorem cbval2v 2006
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 4-Feb-2005.)
Hypothesis
Ref Expression
cbval2v.1 ((x = z y = w) → (φψ))
Assertion
Ref Expression
cbval2v (xyφzwψ)
Distinct variable groups:   z,w,φ   x,y,ψ   x,w   y,z
Allowed substitution hints:   φ(x,y)   ψ(z,w)

Proof of Theorem cbval2v
StepHypRef Expression
1 nfv 1619 . 2 zφ
2 nfv 1619 . 2 wφ
3 nfv 1619 . 2 xψ
4 nfv 1619 . 2 yψ
5 cbval2v.1 . 2 ((x = z y = w) → (φψ))
61, 2, 3, 4, 5cbval2 2004 1 (xyφzwψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by:  nnsucelr  4429  ssfin  4471  fnfrec  6321
  Copyright terms: Public domain W3C validator