| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > cbvex2 | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| cbval2.1 | ⊢ Ⅎzφ |
| cbval2.2 | ⊢ Ⅎwφ |
| cbval2.3 | ⊢ Ⅎxψ |
| cbval2.4 | ⊢ Ⅎyψ |
| cbval2.5 | ⊢ ((x = z ∧ y = w) → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| cbvex2 | ⊢ (∃x∃yφ ↔ ∃z∃wψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbval2.1 | . . 3 ⊢ Ⅎzφ | |
| 2 | 1 | nfex 1843 | . 2 ⊢ Ⅎz∃yφ |
| 3 | cbval2.3 | . . 3 ⊢ Ⅎxψ | |
| 4 | 3 | nfex 1843 | . 2 ⊢ Ⅎx∃wψ |
| 5 | nfv 1619 | . . . . . 6 ⊢ Ⅎw x = z | |
| 6 | cbval2.2 | . . . . . 6 ⊢ Ⅎwφ | |
| 7 | 5, 6 | nfan 1824 | . . . . 5 ⊢ Ⅎw(x = z ∧ φ) |
| 8 | nfv 1619 | . . . . . 6 ⊢ Ⅎy x = z | |
| 9 | cbval2.4 | . . . . . 6 ⊢ Ⅎyψ | |
| 10 | 8, 9 | nfan 1824 | . . . . 5 ⊢ Ⅎy(x = z ∧ ψ) |
| 11 | cbval2.5 | . . . . . . 7 ⊢ ((x = z ∧ y = w) → (φ ↔ ψ)) | |
| 12 | 11 | expcom 424 | . . . . . 6 ⊢ (y = w → (x = z → (φ ↔ ψ))) |
| 13 | 12 | pm5.32d 620 | . . . . 5 ⊢ (y = w → ((x = z ∧ φ) ↔ (x = z ∧ ψ))) |
| 14 | 7, 10, 13 | cbvex 1985 | . . . 4 ⊢ (∃y(x = z ∧ φ) ↔ ∃w(x = z ∧ ψ)) |
| 15 | 19.42v 1905 | . . . 4 ⊢ (∃y(x = z ∧ φ) ↔ (x = z ∧ ∃yφ)) | |
| 16 | 19.42v 1905 | . . . 4 ⊢ (∃w(x = z ∧ ψ) ↔ (x = z ∧ ∃wψ)) | |
| 17 | 14, 15, 16 | 3bitr3i 266 | . . 3 ⊢ ((x = z ∧ ∃yφ) ↔ (x = z ∧ ∃wψ)) |
| 18 | pm5.32 617 | . . 3 ⊢ ((x = z → (∃yφ ↔ ∃wψ)) ↔ ((x = z ∧ ∃yφ) ↔ (x = z ∧ ∃wψ))) | |
| 19 | 17, 18 | mpbir 200 | . 2 ⊢ (x = z → (∃yφ ↔ ∃wψ)) |
| 20 | 2, 4, 19 | cbvex 1985 | 1 ⊢ (∃x∃yφ ↔ ∃z∃wψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: cbvex2v 2007 2eu6 2289 cbvopab 4631 cbvoprab12 5570 |
| Copyright terms: Public domain | W3C validator |