| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > cbvrabv | GIF version | ||
| Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.) |
| Ref | Expression |
|---|---|
| cbvrabv.1 | ⊢ (x = y → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| cbvrabv | ⊢ {x ∈ A ∣ φ} = {y ∈ A ∣ ψ} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2490 | . 2 ⊢ ℲxA | |
| 2 | nfcv 2490 | . 2 ⊢ ℲyA | |
| 3 | nfv 1619 | . 2 ⊢ Ⅎyφ | |
| 4 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
| 5 | cbvrabv.1 | . 2 ⊢ (x = y → (φ ↔ ψ)) | |
| 6 | 1, 2, 3, 4, 5 | cbvrab 2858 | 1 ⊢ {x ∈ A ∣ φ} = {y ∈ A ∣ ψ} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 {crab 2619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |