| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1619 |
. . . 4
⊢ Ⅎz(x ∈ A ∧ φ) |
| 2 | | cbvrab.1 |
. . . . . 6
⊢
ℲxA |
| 3 | 2 | nfcri 2484 |
. . . . 5
⊢ Ⅎx z ∈ A |
| 4 | | nfs1v 2106 |
. . . . 5
⊢ Ⅎx[z / x]φ |
| 5 | 3, 4 | nfan 1824 |
. . . 4
⊢ Ⅎx(z ∈ A ∧ [z / x]φ) |
| 6 | | eleq1 2413 |
. . . . 5
⊢ (x = z →
(x ∈
A ↔ z ∈ A)) |
| 7 | | sbequ12 1919 |
. . . . 5
⊢ (x = z →
(φ ↔ [z / x]φ)) |
| 8 | 6, 7 | anbi12d 691 |
. . . 4
⊢ (x = z →
((x ∈
A ∧ φ) ↔ (z ∈ A ∧ [z / x]φ))) |
| 9 | 1, 5, 8 | cbvab 2472 |
. . 3
⊢ {x ∣ (x ∈ A ∧ φ)} = {z
∣ (z
∈ A ∧ [z / x]φ)} |
| 10 | | cbvrab.2 |
. . . . . 6
⊢
ℲyA |
| 11 | 10 | nfcri 2484 |
. . . . 5
⊢ Ⅎy z ∈ A |
| 12 | | cbvrab.3 |
. . . . . 6
⊢ Ⅎyφ |
| 13 | 12 | nfsb 2109 |
. . . . 5
⊢ Ⅎy[z / x]φ |
| 14 | 11, 13 | nfan 1824 |
. . . 4
⊢ Ⅎy(z ∈ A ∧ [z / x]φ) |
| 15 | | nfv 1619 |
. . . 4
⊢ Ⅎz(y ∈ A ∧ ψ) |
| 16 | | eleq1 2413 |
. . . . 5
⊢ (z = y →
(z ∈
A ↔ y ∈ A)) |
| 17 | | sbequ 2060 |
. . . . . 6
⊢ (z = y →
([z / x]φ ↔
[y / x]φ)) |
| 18 | | cbvrab.4 |
. . . . . . 7
⊢ Ⅎxψ |
| 19 | | cbvrab.5 |
. . . . . . 7
⊢ (x = y →
(φ ↔ ψ)) |
| 20 | 18, 19 | sbie 2038 |
. . . . . 6
⊢ ([y / x]φ ↔ ψ) |
| 21 | 17, 20 | syl6bb 252 |
. . . . 5
⊢ (z = y →
([z / x]φ ↔
ψ)) |
| 22 | 16, 21 | anbi12d 691 |
. . . 4
⊢ (z = y →
((z ∈
A ∧
[z / x]φ) ↔
(y ∈
A ∧ ψ))) |
| 23 | 14, 15, 22 | cbvab 2472 |
. . 3
⊢ {z ∣ (z ∈ A ∧ [z / x]φ)} = {y
∣ (y
∈ A ∧ ψ)} |
| 24 | 9, 23 | eqtri 2373 |
. 2
⊢ {x ∣ (x ∈ A ∧ φ)} = {y
∣ (y
∈ A ∧ ψ)} |
| 25 | | df-rab 2624 |
. 2
⊢ {x ∈ A ∣ φ} = {x
∣ (x
∈ A ∧ φ)} |
| 26 | | df-rab 2624 |
. 2
⊢ {y ∈ A ∣ ψ} = {y
∣ (y
∈ A ∧ ψ)} |
| 27 | 24, 25, 26 | 3eqtr4i 2383 |
1
⊢ {x ∈ A ∣ φ} = {y
∈ A ∣ ψ} |