New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvrex2v | GIF version |
Description: Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by FL, 2-Jul-2012.) |
Ref | Expression |
---|---|
cbvrex2v.1 | ⊢ (x = z → (φ ↔ χ)) |
cbvrex2v.2 | ⊢ (y = w → (χ ↔ ψ)) |
Ref | Expression |
---|---|
cbvrex2v | ⊢ (∃x ∈ A ∃y ∈ B φ ↔ ∃z ∈ A ∃w ∈ B ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrex2v.1 | . . . 4 ⊢ (x = z → (φ ↔ χ)) | |
2 | 1 | rexbidv 2636 | . . 3 ⊢ (x = z → (∃y ∈ B φ ↔ ∃y ∈ B χ)) |
3 | 2 | cbvrexv 2837 | . 2 ⊢ (∃x ∈ A ∃y ∈ B φ ↔ ∃z ∈ A ∃y ∈ B χ) |
4 | cbvrex2v.2 | . . . 4 ⊢ (y = w → (χ ↔ ψ)) | |
5 | 4 | cbvrexv 2837 | . . 3 ⊢ (∃y ∈ B χ ↔ ∃w ∈ B ψ) |
6 | 5 | rexbii 2640 | . 2 ⊢ (∃z ∈ A ∃y ∈ B χ ↔ ∃z ∈ A ∃w ∈ B ψ) |
7 | 3, 6 | bitri 240 | 1 ⊢ (∃x ∈ A ∃y ∈ B φ ↔ ∃z ∈ A ∃w ∈ B ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |