New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvral3v | GIF version |
Description: Change bound variables of triple restricted universal quantification, using implicit substitution. (Contributed by NM, 10-May-2005.) |
Ref | Expression |
---|---|
cbvral3v.1 | ⊢ (x = w → (φ ↔ χ)) |
cbvral3v.2 | ⊢ (y = v → (χ ↔ θ)) |
cbvral3v.3 | ⊢ (z = u → (θ ↔ ψ)) |
Ref | Expression |
---|---|
cbvral3v | ⊢ (∀x ∈ A ∀y ∈ B ∀z ∈ C φ ↔ ∀w ∈ A ∀v ∈ B ∀u ∈ C ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvral3v.1 | . . . 4 ⊢ (x = w → (φ ↔ χ)) | |
2 | 1 | 2ralbidv 2657 | . . 3 ⊢ (x = w → (∀y ∈ B ∀z ∈ C φ ↔ ∀y ∈ B ∀z ∈ C χ)) |
3 | 2 | cbvralv 2836 | . 2 ⊢ (∀x ∈ A ∀y ∈ B ∀z ∈ C φ ↔ ∀w ∈ A ∀y ∈ B ∀z ∈ C χ) |
4 | cbvral3v.2 | . . . 4 ⊢ (y = v → (χ ↔ θ)) | |
5 | cbvral3v.3 | . . . 4 ⊢ (z = u → (θ ↔ ψ)) | |
6 | 4, 5 | cbvral2v 2844 | . . 3 ⊢ (∀y ∈ B ∀z ∈ C χ ↔ ∀v ∈ B ∀u ∈ C ψ) |
7 | 6 | ralbii 2639 | . 2 ⊢ (∀w ∈ A ∀y ∈ B ∀z ∈ C χ ↔ ∀w ∈ A ∀v ∈ B ∀u ∈ C ψ) |
8 | 3, 7 | bitri 240 | 1 ⊢ (∀x ∈ A ∀y ∈ B ∀z ∈ C φ ↔ ∀w ∈ A ∀v ∈ B ∀u ∈ C ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |