New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > clel2 | GIF version |
Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
clel2.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
clel2 | ⊢ (A ∈ B ↔ ∀x(x = A → x ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clel2.1 | . . 3 ⊢ A ∈ V | |
2 | eleq1 2413 | . . 3 ⊢ (x = A → (x ∈ B ↔ A ∈ B)) | |
3 | 1, 2 | ceqsalv 2886 | . 2 ⊢ (∀x(x = A → x ∈ B) ↔ A ∈ B) |
4 | 3 | bicomi 193 | 1 ⊢ (A ∈ B ↔ ∀x(x = A → x ∈ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: snss 3839 |
Copyright terms: Public domain | W3C validator |