New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > inv1 | GIF version |
Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.) |
Ref | Expression |
---|---|
inv1 | ⊢ (A ∩ V) = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 3476 | . 2 ⊢ (A ∩ V) ⊆ A | |
2 | ssid 3291 | . . 3 ⊢ A ⊆ A | |
3 | ssv 3292 | . . 3 ⊢ A ⊆ V | |
4 | 2, 3 | ssini 3479 | . 2 ⊢ A ⊆ (A ∩ V) |
5 | 1, 4 | eqssi 3289 | 1 ⊢ (A ∩ V) = A |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 Vcvv 2860 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: undif1 3626 dfif4 3674 rint0 3967 iinrab2 4030 riin0 4040 compldif 4070 xpkexg 4289 |
Copyright terms: Public domain | W3C validator |