New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbcne12g | GIF version |
Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.) |
Ref | Expression |
---|---|
sbcne12g | ⊢ (A ∈ V → ([̣A / x]̣B ≠ C ↔ [A / x]B ≠ [A / x]C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2521 | . . . . 5 ⊢ (¬ B ≠ C ↔ B = C) | |
2 | 1 | sbcbii 3102 | . . . 4 ⊢ ([̣A / x]̣ ¬ B ≠ C ↔ [̣A / x]̣B = C) |
3 | 2 | a1i 10 | . . 3 ⊢ (A ∈ V → ([̣A / x]̣ ¬ B ≠ C ↔ [̣A / x]̣B = C)) |
4 | sbcng 3087 | . . 3 ⊢ (A ∈ V → ([̣A / x]̣ ¬ B ≠ C ↔ ¬ [̣A / x]̣B ≠ C)) | |
5 | sbceqg 3153 | . . . 4 ⊢ (A ∈ V → ([̣A / x]̣B = C ↔ [A / x]B = [A / x]C)) | |
6 | nne 2521 | . . . 4 ⊢ (¬ [A / x]B ≠ [A / x]C ↔ [A / x]B = [A / x]C) | |
7 | 5, 6 | syl6bbr 254 | . . 3 ⊢ (A ∈ V → ([̣A / x]̣B = C ↔ ¬ [A / x]B ≠ [A / x]C)) |
8 | 3, 4, 7 | 3bitr3d 274 | . 2 ⊢ (A ∈ V → (¬ [̣A / x]̣B ≠ C ↔ ¬ [A / x]B ≠ [A / x]C)) |
9 | 8 | con4bid 284 | 1 ⊢ (A ∈ V → ([̣A / x]̣B ≠ C ↔ [A / x]B ≠ [A / x]C)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 [̣wsbc 3047 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |