New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eq0 | GIF version |
Description: The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
eq0 | ⊢ (A = ∅ ↔ ∀x ¬ x ∈ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neq0 3561 | . . 3 ⊢ (¬ A = ∅ ↔ ∃x x ∈ A) | |
2 | df-ex 1542 | . . 3 ⊢ (∃x x ∈ A ↔ ¬ ∀x ¬ x ∈ A) | |
3 | 1, 2 | bitri 240 | . 2 ⊢ (¬ A = ∅ ↔ ¬ ∀x ¬ x ∈ A) |
4 | 3 | con4bii 288 | 1 ⊢ (A = ∅ ↔ ∀x ¬ x ∈ A) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
This theorem is referenced by: 0el 3567 disj 3592 ssdif0 3610 difin0ss 3617 inssdif0 3618 ralf0 3657 addcnul1 4453 dm0 4919 dmeq0 4923 co01 5094 clos1nrel 5887 ncprc 6125 |
Copyright terms: Public domain | W3C validator |