NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eq0 GIF version

Theorem eq0 3565
Description: The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
eq0 (A = x ¬ x A)
Distinct variable group:   x,A

Proof of Theorem eq0
StepHypRef Expression
1 neq0 3561 . . 3 A = x x A)
2 df-ex 1542 . . 3 (x x A ↔ ¬ x ¬ x A)
31, 2bitri 240 . 2 A = ↔ ¬ x ¬ x A)
43con4bii 288 1 (A = x ¬ x A)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176  wal 1540  wex 1541   = wceq 1642   wcel 1710  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-nul 3552
This theorem is referenced by:  0el  3567  disj  3592  ssdif0  3610  difin0ss  3617  inssdif0  3618  ralf0  3657  addcnul1  4453  dm0  4919  dmeq0  4923  co01  5094  clos1nrel  5887  ncprc  6125
  Copyright terms: Public domain W3C validator