New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csbie2 | GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.) |
Ref | Expression |
---|---|
csbie2t.1 | ⊢ A ∈ V |
csbie2t.2 | ⊢ B ∈ V |
csbie2.3 | ⊢ ((x = A ∧ y = B) → C = D) |
Ref | Expression |
---|---|
csbie2 | ⊢ [A / x][B / y]C = D |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbie2.3 | . . 3 ⊢ ((x = A ∧ y = B) → C = D) | |
2 | 1 | gen2 1547 | . 2 ⊢ ∀x∀y((x = A ∧ y = B) → C = D) |
3 | csbie2t.1 | . . 3 ⊢ A ∈ V | |
4 | csbie2t.2 | . . 3 ⊢ B ∈ V | |
5 | 3, 4 | csbie2t 3181 | . 2 ⊢ (∀x∀y((x = A ∧ y = B) → C = D) → [A / x][B / y]C = D) |
6 | 2, 5 | ax-mp 5 | 1 ⊢ [A / x][B / y]C = D |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 Vcvv 2860 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |