New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-csb | GIF version |
Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 3047, to prevent ambiguity. Theorem sbcel1g 3156 shows an example of how ambiguity could arise if we didn't use distinguished brackets. Theorem sbccsbg 3165 recreates substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
df-csb | ⊢ [A / x]B = {y ∣ [̣A / x]̣y ∈ B} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar x | |
2 | cA | . . 3 class A | |
3 | cB | . . 3 class B | |
4 | 1, 2, 3 | csb 3137 | . 2 class [A / x]B |
5 | vy | . . . . . 6 setvar y | |
6 | 5 | cv 1641 | . . . . 5 class y |
7 | 6, 3 | wcel 1710 | . . . 4 wff y ∈ B |
8 | 7, 1, 2 | wsbc 3047 | . . 3 wff [̣A / x]̣y ∈ B |
9 | 8, 5 | cab 2339 | . 2 class {y ∣ [̣A / x]̣y ∈ B} |
10 | 4, 9 | wceq 1642 | 1 wff [A / x]B = {y ∣ [̣A / x]̣y ∈ B} |
Colors of variables: wff setvar class |
This definition is referenced by: csb2 3139 csbeq1 3140 cbvcsb 3141 csbid 3144 csbco 3146 csbexg 3147 csbtt 3149 sbcel12g 3152 sbceqg 3153 csbeq2d 3161 csbvarg 3164 nfcsb1d 3167 nfcsbd 3170 csbie2g 3183 csbnestgf 3185 cbvralcsf 3199 cbvreucsf 3201 cbvrabcsf 3202 |
Copyright terms: Public domain | W3C validator |