NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3impib GIF version

Theorem 3impib 1149
Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.)
Hypothesis
Ref Expression
3impib.1 (φ → ((ψ χ) → θ))
Assertion
Ref Expression
3impib ((φ ψ χ) → θ)

Proof of Theorem 3impib
StepHypRef Expression
1 3impib.1 . . 3 (φ → ((ψ χ) → θ))
21exp3a 425 . 2 (φ → (ψ → (χθ)))
323imp 1145 1 ((φ ψ χ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  mob  3019  eqreu  3029  dedth3h  3706  peano5  4410  ncfinraise  4482  ncfinlower  4484  nnpweq  4524  spfininduct  4541  clos1induct  5881  3ecoptocl  5999  sbthlem2  6205
  Copyright terms: Public domain W3C validator