New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > composefn | GIF version |
Description: The compose function is a function over the universe. (Contributed by Scott Fenton, 19-Apr-2021.) |
Ref | Expression |
---|---|
composefn | ⊢ Compose Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2863 | . . . . . 6 ⊢ x ∈ V | |
2 | vex 2863 | . . . . . 6 ⊢ y ∈ V | |
3 | 1, 2 | coex 4751 | . . . . 5 ⊢ (x ∘ y) ∈ V |
4 | 3 | eueq1 3010 | . . . 4 ⊢ ∃!z z = (x ∘ y) |
5 | 4 | a1i 10 | . . 3 ⊢ ((x ∈ V ∧ y ∈ V) → ∃!z z = (x ∘ y)) |
6 | 5 | fnoprab 5587 | . 2 ⊢ {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} Fn {〈x, y〉 ∣ (x ∈ V ∧ y ∈ V)} |
7 | df-compose 5749 | . . . 4 ⊢ Compose = (x ∈ V, y ∈ V ↦ (x ∘ y)) | |
8 | df-mpt2 5655 | . . . 4 ⊢ (x ∈ V, y ∈ V ↦ (x ∘ y)) = {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} | |
9 | 7, 8 | eqtri 2373 | . . 3 ⊢ Compose = {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} |
10 | xpvv 4844 | . . . 4 ⊢ (V × V) = V | |
11 | df-xp 4785 | . . . 4 ⊢ (V × V) = {〈x, y〉 ∣ (x ∈ V ∧ y ∈ V)} | |
12 | 10, 11 | eqtr3i 2375 | . . 3 ⊢ V = {〈x, y〉 ∣ (x ∈ V ∧ y ∈ V)} |
13 | fneq1 5174 | . . . 4 ⊢ ( Compose = {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} → ( Compose Fn V ↔ {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} Fn V)) | |
14 | fneq2 5175 | . . . 4 ⊢ (V = {〈x, y〉 ∣ (x ∈ V ∧ y ∈ V)} → ({〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} Fn V ↔ {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} Fn {〈x, y〉 ∣ (x ∈ V ∧ y ∈ V)})) | |
15 | 13, 14 | sylan9bb 680 | . . 3 ⊢ (( Compose = {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} ∧ V = {〈x, y〉 ∣ (x ∈ V ∧ y ∈ V)}) → ( Compose Fn V ↔ {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} Fn {〈x, y〉 ∣ (x ∈ V ∧ y ∈ V)})) |
16 | 9, 12, 15 | mp2an 653 | . 2 ⊢ ( Compose Fn V ↔ {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} Fn {〈x, y〉 ∣ (x ∈ V ∧ y ∈ V)}) |
17 | 6, 16 | mpbir 200 | 1 ⊢ Compose Fn V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 Vcvv 2860 {copab 4623 ∘ ccom 4722 × cxp 4771 Fn wfn 4777 {coprab 5528 ↦ cmpt2 5654 Compose ccompose 5748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-oprab 5529 df-mpt2 5655 df-compose 5749 |
This theorem is referenced by: brcomposeg 5820 |
Copyright terms: Public domain | W3C validator |