![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > composefn | GIF version |
Description: The compose function is a function over the universe. (Contributed by Scott Fenton, 19-Apr-2021.) |
Ref | Expression |
---|---|
composefn | ⊢ Compose Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2862 | . . . . . 6 ⊢ x ∈ V | |
2 | vex 2862 | . . . . . 6 ⊢ y ∈ V | |
3 | 1, 2 | coex 4750 | . . . . 5 ⊢ (x ∘ y) ∈ V |
4 | 3 | eueq1 3009 | . . . 4 ⊢ ∃!z z = (x ∘ y) |
5 | 4 | a1i 10 | . . 3 ⊢ ((x ∈ V ∧ y ∈ V) → ∃!z z = (x ∘ y)) |
6 | 5 | fnoprab 5586 | . 2 ⊢ {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} Fn {〈x, y〉 ∣ (x ∈ V ∧ y ∈ V)} |
7 | df-compose 5748 | . . . 4 ⊢ Compose = (x ∈ V, y ∈ V ↦ (x ∘ y)) | |
8 | df-mpt2 5654 | . . . 4 ⊢ (x ∈ V, y ∈ V ↦ (x ∘ y)) = {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} | |
9 | 7, 8 | eqtri 2373 | . . 3 ⊢ Compose = {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} |
10 | xpvv 4843 | . . . 4 ⊢ (V × V) = V | |
11 | df-xp 4784 | . . . 4 ⊢ (V × V) = {〈x, y〉 ∣ (x ∈ V ∧ y ∈ V)} | |
12 | 10, 11 | eqtr3i 2375 | . . 3 ⊢ V = {〈x, y〉 ∣ (x ∈ V ∧ y ∈ V)} |
13 | fneq1 5173 | . . . 4 ⊢ ( Compose = {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} → ( Compose Fn V ↔ {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} Fn V)) | |
14 | fneq2 5174 | . . . 4 ⊢ (V = {〈x, y〉 ∣ (x ∈ V ∧ y ∈ V)} → ({〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} Fn V ↔ {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} Fn {〈x, y〉 ∣ (x ∈ V ∧ y ∈ V)})) | |
15 | 13, 14 | sylan9bb 680 | . . 3 ⊢ (( Compose = {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} ∧ V = {〈x, y〉 ∣ (x ∈ V ∧ y ∈ V)}) → ( Compose Fn V ↔ {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} Fn {〈x, y〉 ∣ (x ∈ V ∧ y ∈ V)})) |
16 | 9, 12, 15 | mp2an 653 | . 2 ⊢ ( Compose Fn V ↔ {〈〈x, y〉, z〉 ∣ ((x ∈ V ∧ y ∈ V) ∧ z = (x ∘ y))} Fn {〈x, y〉 ∣ (x ∈ V ∧ y ∈ V)}) |
17 | 6, 16 | mpbir 200 | 1 ⊢ Compose Fn V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 Vcvv 2859 {copab 4622 ∘ ccom 4721 × cxp 4770 Fn wfn 4776 {coprab 5527 ↦ cmpt2 5653 Compose ccompose 5747 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fn 4790 df-oprab 5528 df-mpt2 5654 df-compose 5748 |
This theorem is referenced by: brcomposeg 5819 |
Copyright terms: Public domain | W3C validator |