Step | Hyp | Ref
| Expression |
1 | | nfv 1619 |
. . . 4
⊢ Ⅎx A = D |
2 | | nfra1 2665 |
. . . 4
⊢ Ⅎx∀x ∈ A (B = E ∧ ∀y ∈ B C = F) |
3 | 1, 2 | nfan 1824 |
. . 3
⊢ Ⅎx(A = D ∧ ∀x ∈ A (B = E ∧ ∀y ∈ B C = F)) |
4 | | nfv 1619 |
. . . 4
⊢ Ⅎy A = D |
5 | | nfcv 2490 |
. . . . 5
⊢
ℲyA |
6 | | nfv 1619 |
. . . . . 6
⊢ Ⅎy B = E |
7 | | nfra1 2665 |
. . . . . 6
⊢ Ⅎy∀y ∈ B C = F |
8 | 6, 7 | nfan 1824 |
. . . . 5
⊢ Ⅎy(B = E ∧ ∀y ∈ B C = F) |
9 | 5, 8 | nfral 2668 |
. . . 4
⊢ Ⅎy∀x ∈ A (B = E ∧ ∀y ∈ B C = F) |
10 | 4, 9 | nfan 1824 |
. . 3
⊢ Ⅎy(A = D ∧ ∀x ∈ A (B = E ∧ ∀y ∈ B C = F)) |
11 | | nfv 1619 |
. . 3
⊢ Ⅎz(A = D ∧ ∀x ∈ A (B = E ∧ ∀y ∈ B C = F)) |
12 | | rsp 2675 |
. . . . . . 7
⊢ (∀x ∈ A (B = E ∧ ∀y ∈ B C = F) → (x
∈ A
→ (B = E ∧ ∀y ∈ B C = F))) |
13 | | rsp 2675 |
. . . . . . . . . 10
⊢ (∀y ∈ B C = F →
(y ∈
B → C = F)) |
14 | | eqeq2 2362 |
. . . . . . . . . 10
⊢ (C = F →
(z = C
↔ z = F)) |
15 | 13, 14 | syl6 29 |
. . . . . . . . 9
⊢ (∀y ∈ B C = F →
(y ∈
B → (z = C ↔
z = F))) |
16 | 15 | pm5.32d 620 |
. . . . . . . 8
⊢ (∀y ∈ B C = F →
((y ∈
B ∧
z = C)
↔ (y ∈ B ∧ z = F))) |
17 | | eleq2 2414 |
. . . . . . . . 9
⊢ (B = E →
(y ∈
B ↔ y ∈ E)) |
18 | 17 | anbi1d 685 |
. . . . . . . 8
⊢ (B = E →
((y ∈
B ∧
z = F)
↔ (y ∈ E ∧ z = F))) |
19 | 16, 18 | sylan9bbr 681 |
. . . . . . 7
⊢ ((B = E ∧ ∀y ∈ B C = F) → ((y
∈ B ∧ z = C) ↔ (y
∈ E ∧ z = F))) |
20 | 12, 19 | syl6 29 |
. . . . . 6
⊢ (∀x ∈ A (B = E ∧ ∀y ∈ B C = F) → (x
∈ A
→ ((y ∈ B ∧ z = C) ↔ (y
∈ E ∧ z = F)))) |
21 | 20 | pm5.32d 620 |
. . . . 5
⊢ (∀x ∈ A (B = E ∧ ∀y ∈ B C = F) → ((x
∈ A ∧ (y ∈ B ∧ z = C)) ↔ (x
∈ A ∧ (y ∈ E ∧ z = F)))) |
22 | | eleq2 2414 |
. . . . . 6
⊢ (A = D →
(x ∈
A ↔ x ∈ D)) |
23 | 22 | anbi1d 685 |
. . . . 5
⊢ (A = D →
((x ∈
A ∧
(y ∈
E ∧
z = F))
↔ (x ∈ D ∧ (y ∈ E ∧ z = F)))) |
24 | 21, 23 | sylan9bbr 681 |
. . . 4
⊢ ((A = D ∧ ∀x ∈ A (B = E ∧ ∀y ∈ B C = F)) →
((x ∈
A ∧
(y ∈
B ∧
z = C))
↔ (x ∈ D ∧ (y ∈ E ∧ z = F)))) |
25 | | anass 630 |
. . . 4
⊢ (((x ∈ A ∧ y ∈ B) ∧ z = C) ↔
(x ∈
A ∧
(y ∈
B ∧
z = C))) |
26 | | anass 630 |
. . . 4
⊢ (((x ∈ D ∧ y ∈ E) ∧ z = F) ↔
(x ∈
D ∧
(y ∈
E ∧
z = F))) |
27 | 24, 25, 26 | 3bitr4g 279 |
. . 3
⊢ ((A = D ∧ ∀x ∈ A (B = E ∧ ∀y ∈ B C = F)) →
(((x ∈
A ∧
y ∈
B) ∧
z = C)
↔ ((x ∈ D ∧ y ∈ E) ∧ z = F))) |
28 | 3, 10, 11, 27 | oprabbid 5564 |
. 2
⊢ ((A = D ∧ ∀x ∈ A (B = E ∧ ∀y ∈ B C = F)) →
{〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = C)} = {〈〈x, y〉, z〉 ∣ ((x ∈ D ∧ y ∈ E) ∧ z = F)}) |
29 | | df-mpt2 5655 |
. 2
⊢ (x ∈ A, y ∈ B ↦ C) = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = C)} |
30 | | df-mpt2 5655 |
. 2
⊢ (x ∈ D, y ∈ E ↦ F) = {〈〈x, y〉, z〉 ∣ ((x ∈ D ∧ y ∈ E) ∧ z = F)} |
31 | 28, 29, 30 | 3eqtr4g 2410 |
1
⊢ ((A = D ∧ ∀x ∈ A (B = E ∧ ∀y ∈ B C = F)) →
(x ∈
A, y
∈ B ↦ C) =
(x ∈
D, y
∈ E ↦ F)) |