| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfmpt2 | GIF version | ||
| Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfmpt2.1 | ⊢ ℲzA |
| nfmpt2.2 | ⊢ ℲzB |
| nfmpt2.3 | ⊢ ℲzC |
| Ref | Expression |
|---|---|
| nfmpt2 | ⊢ Ⅎz(x ∈ A, y ∈ B ↦ C) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt2 5655 | . 2 ⊢ (x ∈ A, y ∈ B ↦ C) = {〈〈x, y〉, w〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ w = C)} | |
| 2 | nfmpt2.1 | . . . . . 6 ⊢ ℲzA | |
| 3 | 2 | nfcri 2484 | . . . . 5 ⊢ Ⅎz x ∈ A |
| 4 | nfmpt2.2 | . . . . . 6 ⊢ ℲzB | |
| 5 | 4 | nfcri 2484 | . . . . 5 ⊢ Ⅎz y ∈ B |
| 6 | 3, 5 | nfan 1824 | . . . 4 ⊢ Ⅎz(x ∈ A ∧ y ∈ B) |
| 7 | nfmpt2.3 | . . . . 5 ⊢ ℲzC | |
| 8 | 7 | nfeq2 2501 | . . . 4 ⊢ Ⅎz w = C |
| 9 | 6, 8 | nfan 1824 | . . 3 ⊢ Ⅎz((x ∈ A ∧ y ∈ B) ∧ w = C) |
| 10 | 9 | nfoprab 5550 | . 2 ⊢ Ⅎz{〈〈x, y〉, w〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ w = C)} |
| 11 | 1, 10 | nfcxfr 2487 | 1 ⊢ Ⅎz(x ∈ A, y ∈ B ↦ C) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 358 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 {coprab 5528 ↦ cmpt2 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-oprab 5529 df-mpt2 5655 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |