| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dfima4 | GIF version | ||
| Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (The proof was shortened by Andrew Salmon, 27-Aug-2011.) (Contributed by set.mm contributors, 14-Aug-1994.) (Revised by set.mm contributors, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dfima4 | ⊢ (A “ B) = {y ∣ ∃x(x ∈ B ∧ 〈x, y〉 ∈ A)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 4728 | . 2 ⊢ (A “ B) = {y ∣ ∃x ∈ B xAy} | |
| 2 | df-br 4641 | . . . . 5 ⊢ (xAy ↔ 〈x, y〉 ∈ A) | |
| 3 | 2 | rexbii 2640 | . . . 4 ⊢ (∃x ∈ B xAy ↔ ∃x ∈ B 〈x, y〉 ∈ A) |
| 4 | df-rex 2621 | . . . 4 ⊢ (∃x ∈ B 〈x, y〉 ∈ A ↔ ∃x(x ∈ B ∧ 〈x, y〉 ∈ A)) | |
| 5 | 3, 4 | bitri 240 | . . 3 ⊢ (∃x ∈ B xAy ↔ ∃x(x ∈ B ∧ 〈x, y〉 ∈ A)) |
| 6 | 5 | abbii 2466 | . 2 ⊢ {y ∣ ∃x ∈ B xAy} = {y ∣ ∃x(x ∈ B ∧ 〈x, y〉 ∈ A)} |
| 7 | 1, 6 | eqtri 2373 | 1 ⊢ (A “ B) = {y ∣ ∃x(x ∈ B ∧ 〈x, y〉 ∈ A)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 ∃wrex 2616 〈cop 4562 class class class wbr 4640 “ cima 4723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-rex 2621 df-br 4641 df-ima 4728 |
| This theorem is referenced by: imassrn 5010 imai 5011 |
| Copyright terms: Public domain | W3C validator |