New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfima3 | GIF version |
Description: Alternate definition of image. (Contributed by set.mm contributors, 19-Apr-2004.) (Revised by set.mm contributors, 27-Aug-2011.) |
Ref | Expression |
---|---|
dfima3 | ⊢ (A “ B) = ran (A ↾ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelres 4951 | . . . . 5 ⊢ (〈y, x〉 ∈ (A ↾ B) ↔ (〈y, x〉 ∈ A ∧ y ∈ B)) | |
2 | ancom 437 | . . . . 5 ⊢ ((〈y, x〉 ∈ A ∧ y ∈ B) ↔ (y ∈ B ∧ 〈y, x〉 ∈ A)) | |
3 | 1, 2 | bitri 240 | . . . 4 ⊢ (〈y, x〉 ∈ (A ↾ B) ↔ (y ∈ B ∧ 〈y, x〉 ∈ A)) |
4 | 3 | exbii 1582 | . . 3 ⊢ (∃y〈y, x〉 ∈ (A ↾ B) ↔ ∃y(y ∈ B ∧ 〈y, x〉 ∈ A)) |
5 | elrn2 4898 | . . 3 ⊢ (x ∈ ran (A ↾ B) ↔ ∃y〈y, x〉 ∈ (A ↾ B)) | |
6 | elima3 4757 | . . 3 ⊢ (x ∈ (A “ B) ↔ ∃y(y ∈ B ∧ 〈y, x〉 ∈ A)) | |
7 | 4, 5, 6 | 3bitr4ri 269 | . 2 ⊢ (x ∈ (A “ B) ↔ x ∈ ran (A ↾ B)) |
8 | 7 | eqriv 2350 | 1 ⊢ (A “ B) = ran (A ↾ B) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 〈cop 4562 “ cima 4723 ran crn 4774 ↾ cres 4775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-ima 4728 df-xp 4785 df-rn 4787 df-res 4789 |
This theorem is referenced by: resima 5007 resima2 5008 rnresi 5012 resiima 5013 ima0 5014 imadisj 5016 imass1 5024 imass2 5025 ndmima 5026 imaundi 5040 imaundir 5041 rninxp 5061 imadmres 5080 rnco2 5089 funcnvres 5166 funimacnv 5169 fnima 5202 fores 5279 f1orescnv 5302 foimacnv 5304 resdif 5307 funfvima 5460 mptpreima 5683 fundmen 6044 |
Copyright terms: Public domain | W3C validator |