New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dif0 | GIF version |
Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
dif0 | ⊢ (A ∖ ∅) = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difid 3619 | . . 3 ⊢ (A ∖ A) = ∅ | |
2 | 1 | difeq2i 3383 | . 2 ⊢ (A ∖ (A ∖ A)) = (A ∖ ∅) |
3 | difdif 3393 | . 2 ⊢ (A ∖ (A ∖ A)) = A | |
4 | 2, 3 | eqtr3i 2375 | 1 ⊢ (A ∖ ∅) = A |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∖ cdif 3207 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 |
This theorem is referenced by: undifv 3625 |
Copyright terms: Public domain | W3C validator |