New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > undifv | GIF version |
Description: The union of a class and its complement is the universe. Theorem 5.1(5) of [Stoll] p. 17. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
undifv | ⊢ (A ∪ (V ∖ A)) = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfun3 3493 | . 2 ⊢ (A ∪ (V ∖ A)) = (V ∖ ((V ∖ A) ∩ (V ∖ (V ∖ A)))) | |
2 | disjdif 3622 | . . 3 ⊢ ((V ∖ A) ∩ (V ∖ (V ∖ A))) = ∅ | |
3 | 2 | difeq2i 3382 | . 2 ⊢ (V ∖ ((V ∖ A) ∩ (V ∖ (V ∖ A)))) = (V ∖ ∅) |
4 | dif0 3620 | . 2 ⊢ (V ∖ ∅) = V | |
5 | 1, 3, 4 | 3eqtri 2377 | 1 ⊢ (A ∪ (V ∖ A)) = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 Vcvv 2859 ∖ cdif 3206 ∪ cun 3207 ∩ cin 3208 ∅c0 3550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 |
This theorem is referenced by: undif1 3625 dfif4 3673 |
Copyright terms: Public domain | W3C validator |