| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > difdif | GIF version | ||
| Description: Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.) | 
| Ref | Expression | 
|---|---|
| difdif | ⊢ (A ∖ (B ∖ A)) = A | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm4.45im 545 | . . 3 ⊢ (x ∈ A ↔ (x ∈ A ∧ (x ∈ B → x ∈ A))) | |
| 2 | iman 413 | . . . . 5 ⊢ ((x ∈ B → x ∈ A) ↔ ¬ (x ∈ B ∧ ¬ x ∈ A)) | |
| 3 | eldif 3222 | . . . . 5 ⊢ (x ∈ (B ∖ A) ↔ (x ∈ B ∧ ¬ x ∈ A)) | |
| 4 | 2, 3 | xchbinxr 302 | . . . 4 ⊢ ((x ∈ B → x ∈ A) ↔ ¬ x ∈ (B ∖ A)) | 
| 5 | 4 | anbi2i 675 | . . 3 ⊢ ((x ∈ A ∧ (x ∈ B → x ∈ A)) ↔ (x ∈ A ∧ ¬ x ∈ (B ∖ A))) | 
| 6 | 1, 5 | bitr2i 241 | . 2 ⊢ ((x ∈ A ∧ ¬ x ∈ (B ∖ A)) ↔ x ∈ A) | 
| 7 | 6 | difeqri 3388 | 1 ⊢ (A ∖ (B ∖ A)) = A | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∖ cdif 3207 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 | 
| This theorem is referenced by: dif0 3621 undifabs 3628 | 
| Copyright terms: Public domain | W3C validator |