NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  disjr GIF version

Theorem disjr 3593
Description: Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
disjr ((AB) = x B ¬ x A)
Distinct variable groups:   x,A   x,B

Proof of Theorem disjr
StepHypRef Expression
1 incom 3449 . . 3 (AB) = (BA)
21eqeq1i 2360 . 2 ((AB) = ↔ (BA) = )
3 disj 3592 . 2 ((BA) = x B ¬ x A)
42, 3bitri 240 1 ((AB) = x B ¬ x A)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   = wceq 1642   wcel 1710  wral 2615  cin 3209  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-nul 3552
This theorem is referenced by:  nnadjoinpw  4522  sfinltfin  4536
  Copyright terms: Public domain W3C validator