New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dral2 | GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) |
Ref | Expression |
---|---|
dral1.1 | ⊢ (∀x x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
dral2 | ⊢ (∀x x = y → (∀zφ ↔ ∀zψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbae 1953 | . 2 ⊢ (∀x x = y → ∀z∀x x = y) | |
2 | dral1.1 | . 2 ⊢ (∀x x = y → (φ ↔ ψ)) | |
3 | 1, 2 | albidh 1590 | 1 ⊢ (∀x x = y → (∀zφ ↔ ∀zψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: drnf2 1970 equveli 1988 sbal1 2126 drnfc1 2506 drnfc2 2507 |
Copyright terms: Public domain | W3C validator |