New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > drex1 | GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) |
Ref | Expression |
---|---|
dral1.1 | ⊢ (∀x x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
drex1 | ⊢ (∀x x = y → (∃xφ ↔ ∃yψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dral1.1 | . . . . 5 ⊢ (∀x x = y → (φ ↔ ψ)) | |
2 | 1 | notbid 285 | . . . 4 ⊢ (∀x x = y → (¬ φ ↔ ¬ ψ)) |
3 | 2 | dral1 1965 | . . 3 ⊢ (∀x x = y → (∀x ¬ φ ↔ ∀y ¬ ψ)) |
4 | 3 | notbid 285 | . 2 ⊢ (∀x x = y → (¬ ∀x ¬ φ ↔ ¬ ∀y ¬ ψ)) |
5 | df-ex 1542 | . 2 ⊢ (∃xφ ↔ ¬ ∀x ¬ φ) | |
6 | df-ex 1542 | . 2 ⊢ (∃yψ ↔ ¬ ∀y ¬ ψ) | |
7 | 4, 5, 6 | 3bitr4g 279 | 1 ⊢ (∀x x = y → (∃xφ ↔ ∃yψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: exdistrf 1971 drsb1 2022 eujustALT 2207 copsexg 4608 dfid3 4769 |
Copyright terms: Public domain | W3C validator |