New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  dveeq2-o GIF version

Theorem dveeq2-o 2184
 Description: Quantifier introduction when one pair of variables is distinct. Version of dveeq2 1940 using ax-11o 2141. (Contributed by NM, 2-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dveeq2-o x x = y → (z = yx z = y))
Distinct variable group:   x,z

Proof of Theorem dveeq2-o
Dummy variable w is distinct from all other variables.
StepHypRef Expression
1 ax-17 1616 . 2 (z = wx z = w)
2 ax-17 1616 . 2 (z = yw z = y)
3 equequ2 1686 . 2 (w = y → (z = wz = y))
41, 2, 3dvelimf-o 2180 1 x x = y → (z = yx z = y))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1540 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-4 2135  ax-5o 2136  ax-6o 2137  ax-10o 2139  ax-12o 2142 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545 This theorem is referenced by:  ax11eq  2193  ax11el  2194  ax11inda  2200  ax11v2-o  2201
 Copyright terms: Public domain W3C validator