| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dveeq2-o | GIF version | ||
| Description: Quantifier introduction when one pair of variables is distinct. Version of dveeq2 1940 using ax-11o 2141. (Contributed by NM, 2-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dveeq2-o | ⊢ (¬ ∀x x = y → (z = y → ∀x z = y)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1616 | . 2 ⊢ (z = w → ∀x z = w) | |
| 2 | ax-17 1616 | . 2 ⊢ (z = y → ∀w z = y) | |
| 3 | equequ2 1686 | . 2 ⊢ (w = y → (z = w ↔ z = y)) | |
| 4 | 1, 2, 3 | dvelimf-o 2180 | 1 ⊢ (¬ ∀x x = y → (z = y → ∀x z = y)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-4 2135 ax-5o 2136 ax-6o 2137 ax-10o 2139 ax-12o 2142 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: ax11eq 2193 ax11el 2194 ax11inda 2200 ax11v2-o 2201 |
| Copyright terms: Public domain | W3C validator |